110.平衡二叉树

思路:若当前节点为空,返回true(即当前节点算平衡二叉树),否则计算当前节点的左子树与右子树层数差值,如果差值的绝对值大于1(即当前节点不为二叉树),则直接返回false,然后再继续往左子树和右子树走,求他们结果的与(即只有当两子树都为平衡二叉树,这棵树才会是一棵平衡二叉树,若有一支不满足则就不会成为平衡二叉树)

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    bool isBalanced(TreeNode* root) {
        if(root==nullptr)
           return true;
        if(abs(Count(root->left)-Count(root->right))>1)
           return false;
        return isBalanced(root->left)&&isBalanced(root->right);
    }
    int Count(TreeNode* &root)
    {
        if(root==nullptr)
           return 0;
        return max(Count(root->left),Count(root->right))+1;
    }
};

看了解题另一种思路:从下往上,计算每个节点的左右子树高度,如果为非平衡二叉树或左右子树高度得-1,则返回-1,否则返回此节点的高度。若最终结果大于-1,则为平衡二叉树,反正不为平衡二叉树。

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    int height(TreeNode* &root)
    {
        if(root==NULL)
           return 0;
        int lheight=height(root->left);
        int rheight=height(root->right);
        if(lheight==-1||rheight==-1||abs(rheight-lheight)>1)
            return -1;
        else
           return max(rheight,lheight)+1;
    }
    bool isBalanced(TreeNode* root) {
        return height(root)>-1;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值