使用Memgraph和LangChain构建自然语言查询接口

使用Memgraph和LangChain构建自然语言查询接口

引言

Memgraph是一款开源图数据库,兼容Neo4j,使用Cypher图查询语言进行数据查询。本文将介绍如何利用大语言模型(LLM)为Memgraph数据库提供自然语言接口。完成本教程需要安装Docker和Python 3.x,并确保有一个运行中的Memgraph实例。

主要内容

设置环境

首先,我们需要运行Memgraph实例。你可以使用以下命令快速启动Memgraph Platform(包含Memgraph数据库、MAGE库和Memgraph Lab):

在Linux/MacOS上:

curl https://install.memgraph.com | sh

在Windows上:

iwr https://windows.memgraph.com | iex

这两个命令会运行一个脚本,下载Docker Compose文件到你的系统,并在两个独立的容器中构建和启动memgraph-mage和memgraph-lab服务。更多安装信息请参考Memgraph文档.

安装必要的Python包

使用pip安装所有必要的包:

pip install langchain langchain-openai neo4j gqlalchemy --user

然后在你的Python脚本中导入这些包:

import os
from gqlalchemy import Memgraph
from langchain.chains import GraphCypherQAChain
from langchain_community.graphs import MemgraphGraph
from langchain_core.<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值