使用Memgraph和LangChain构建自然语言查询接口
引言
Memgraph是一款开源图数据库,兼容Neo4j,使用Cypher图查询语言进行数据查询。本文将介绍如何利用大语言模型(LLM)为Memgraph数据库提供自然语言接口。完成本教程需要安装Docker和Python 3.x,并确保有一个运行中的Memgraph实例。
主要内容
设置环境
首先,我们需要运行Memgraph实例。你可以使用以下命令快速启动Memgraph Platform(包含Memgraph数据库、MAGE库和Memgraph Lab):
在Linux/MacOS上:
curl https://install.memgraph.com | sh
在Windows上:
iwr https://windows.memgraph.com | iex
这两个命令会运行一个脚本,下载Docker Compose文件到你的系统,并在两个独立的容器中构建和启动memgraph-mage和memgraph-lab服务。更多安装信息请参考Memgraph文档.
安装必要的Python包
使用pip安装所有必要的包:
pip install langchain langchain-openai neo4j gqlalchemy --user
然后在你的Python脚本中导入这些包:
import os
from gqlalchemy import Memgraph
from langchain.chains import GraphCypherQAChain
from langchain_community.graphs import MemgraphGraph
from langchain_core.<