快速掌握文本分割:使用Token和字符分割技术
在处理大文本时,尤其是与语言模型交互时,我们必须关注文本的Token限制。合理地将文本拆分成较小块不仅可以提升处理的效率,还能避免超出Token限制。本文将探讨多种文本分割方法,提供实用的代码示例,以及讨论其中的挑战与解决方案。
Token分割的重要性
在使用语言模型时,Token的数量是一个关键的限制因素。因此,分割文本时需要准确计算Token数,并使用与语言模型相同的分词器。OpenAI的tiktoken
是一个为此目的而设计的快速BPE分词器,非常适合OpenAI的模型。
文本分割技术
使用tiktoken
进行Token分割
tiktoken
提供了一种高效的分词器,可以用于估算OpenAI模型的Token使用情况。
%pip install --upgrade --quiet langchain-text-splitters tiktoken
from