探索ScaNN:高效的向量相似性搜索方法

探索ScaNN:高效的向量相似性搜索方法

引言

在大数据时代,如何快速有效地进行向量相似性搜索成为了一个挑战。ScaNN(Scalable Nearest Neighbors)是一种旨在大规模实现向量相似性搜索的方法。本文将介绍ScaNN的基本概念、如何使用及其潜在的挑战,并提供实用的代码示例,以帮助开发者更好地理解和应用ScaNN。

主要内容

什么是ScaNN?

ScaNN是一种专为大规模数据集设计的近邻搜索方法,支持最大内积搜索(Maximum Inner Product Search),同时兼容其他距离函数如欧几里得距离。其实现针对支持AVX2的x86处理器进行了优化。

如何安装ScaNN

要使用ScaNN,可以通过pip安装:

%pip install --upgrade --quiet scann

或者您可以参考ScaNN官方网站获取源码安装指导。

使用ScaNN进行检索

下面是如何结合Huggingface Embeddings使用ScaNN的示例:

from
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值