探索ScaNN:高效的向量相似性搜索方法
引言
在大数据时代,如何快速有效地进行向量相似性搜索成为了一个挑战。ScaNN(Scalable Nearest Neighbors)是一种旨在大规模实现向量相似性搜索的方法。本文将介绍ScaNN的基本概念、如何使用及其潜在的挑战,并提供实用的代码示例,以帮助开发者更好地理解和应用ScaNN。
主要内容
什么是ScaNN?
ScaNN是一种专为大规模数据集设计的近邻搜索方法,支持最大内积搜索(Maximum Inner Product Search),同时兼容其他距离函数如欧几里得距离。其实现针对支持AVX2的x86处理器进行了优化。
如何安装ScaNN
要使用ScaNN,可以通过pip安装:
%pip install --upgrade --quiet scann
或者您可以参考ScaNN官方网站获取源码安装指导。
使用ScaNN进行检索
下面是如何结合Huggingface Embeddings使用ScaNN的示例:
from