# 为你的项目创建自定义文档加载器的完整指南
## 引言
在大规模语言模型(LLMs)驱动的应用中,常常需要从数据库或文件(如PDF)中提取数据,并转换为LLMs可用的格式。在LangChain中,这通常涉及创建包含页面内容和元数据的Document对象。本篇文章将介绍如何创建自定义文档加载器,帮助你处理从多种文件格式中提取数据并供LLM使用。
## 主要内容
### 1. 创建标准文档加载器
通过从`BaseLoader`派生,可以实现一个标准的文档加载器。`BaseLoader`提供了加载文档的标准接口:
- `lazy_load`:用于逐个懒加载文档,适合生产环境。
- `alazy_load`:异步版本的`lazy_load`,可以提高效率。
- `load`:用于一次性加载所有文档,适合原型和交互式工作。
### 2. 使用`BaseBlobParser`创建解析器
解析器接受一个`Blob`,输出一个`Document`对象列表。Blob是存储于内存或文件中的数据表现形式。
#### 示例:创建一个简单的解析器
```python
from langchain_core.document_loaders import BaseBlobParser, Blob
class MyParser(BaseBlobParser):
def lazy_parse(self, blob: Blob) -> Iterator[Document]:
line_number = 0
with blob.as_bytes_io() as f:
for line in f:
line_number += 1
yield Document(
page_content=line,
metadata={"line_number": line_number, "source": blob.source},
)
3. 文件加载器
LangChain支持FileSystemBlobLoader
,你可以使用它来从文件系统加载Blob,然后使用解析器解析它们。
代码示例
以下是实现自定义文档加载器的代码示例:
from langchain_core.document_loaders import BaseLoader
from langchain_core.documents import Document
class CustomDocumentLoader(BaseLoader):
def __init__(self, file_path: str) -> None:
self.file_path = file_path
def lazy_load(self) -> Iterator[Document]:
with open(self.file_path, encoding="utf-8") as f:
line_number = 0
for line in f:
yield Document(
page_content=line,
metadata={"line_number": line_number, "source": self.file_path},
)
line_number += 1
常见问题和解决方案
- 内存问题:使用
load
方法时,大文件可能导致内存溢出。建议使用lazy_load
方法逐行加载。 - 解析器兼容性:确保解析器与文件格式兼容,必要时自定义解析逻辑。
总结和进一步学习资源
创建自定义文档加载器能让应用更灵活地处理不同的数据格式。通过学习LangChain文档和源码,你能更好地理解和扩展这些工具。
参考资料
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
---END---