引言
在当今的大数据和深度学习时代,如何有效地存储和管理由深度神经网络和其他机器学习模型生成的大量嵌入向量成为一个关键问题。VikingDB作为一个专门为此设计的数据库,提供了强大的功能来处理这些嵌入向量。本篇文章将介绍如何使用VikingDB的基本功能,并提供实用的代码示例。
主要内容
VikingDB概述
VikingDB是一个专门用于存储、索引和管理深度学习嵌入向量的数据库。它能够处理海量的数据输入,进行快速的相似度搜索,非常适合用作机器学习模型中的向量存储。
准备工作
为了使用VikingDB,我们需要使用Langchain社区包及其相关的VikingDB集成。首先,确保安装必要的库:
pip install -qU langchain-community
pip install --upgrade volcengine
随后,您需要确保您的VikingDB实例已经启动并运行且获取到必要的API密钥。
API密钥配置
为确保安全性和功能完整,我们需要配置API密钥:
import getpass
import os
os.environ["OPENAI_API_KEY"] = getpass.getpass(