打造您的专属智能AI助手:使用Vectara实现Retrieval-Augmented-Generation
欢迎来到这篇关于如何使用Vectara平台创建一个个性化智能AI助手的文章。在这里,我们将介绍Vectara的主要功能,并提供实用的代码示例,演示如何使用这个强大的平台来实现Retrieval-Augmented-Generation(RAG)。这将帮助您轻松创建一个类似ChatGPT的体验,利用您的数据、文档和知识进行增强。
Vectara简介
Vectara提供了一种被称为RAG-as-a-service的服务,结合了文本提取、向量存储、查询服务和生成式总结,所有这些都是通过简单易用的API提供的。在此过程中,您将能够:
- 从各种文件格式中提取文本。
- 使用基于机器学习的chunking来优化文本片段。
- 存储和检索文本片段的嵌入向量。
- 利用生成式语言模型(LLM)创建带有引用的总结。
使用Vectara
准备工作
要开始使用Vectara,首先需要注册一个免费账户并获取API密钥。接着,可以在环境变量中设置这些凭证,或直接提供给Vectara实例。
export VECTARA_CUSTOMER_ID="your_customer_id"
export VECTARA_CORPUS_ID="your_corpus_id"
export VECTARA_API_KEY="your-vectara-api-key"
Vectara作为向量存储
您可以使用Vectara作为LangChain的向量存储,通过以下代码创建一个Vectara实例:
from langchain_community.vectorstores import Vectara
vectara = Vectara(
vectara_customer_id="your_customer_id",
vectara_corpus_id="your_corpus_id",
vectara_api_key="your-vectara-api-key"
)
您可以添加文本或文件到向量存储中,例如:
vectara.add_texts(["to be or not to be", "that is the question"])
vectara.add_files(["path/to/file1.pdf", "path/to/file2.pdf"])
查询向量存储
使用similarity_search_with_score
方法可以查询Vectara存储的内容,查找最相关的文档:
results = vectara.similarity_search_with_score("what is LangChain?")
代码示例
以下是一个完整的示例代码,展示如何使用Vectara进行RAG:
from langchain_community.vectorstores import Vectara
from langchain_community.vectorstores.config import VectaraQueryConfig, SummaryConfig, RerankConfig
# 通过API代理服务提高访问稳定性
vectara = Vectara(
vectara_customer_id="your_customer_id",
vectara_corpus_id="your_corpus_id",
vectara_api_key="your-vectara-api-key"
)
summary_config = SummaryConfig(is_enabled=True, max_results=7, response_lang='eng')
rerank_config = RerankConfig(reranker="mmr", rerank_k=50, mmr_diversity_bias=0.2)
config = VectaraQueryConfig(k=10, lambda_val=0.005, rerank_config=rerank_config, summary_config=summary_config)
query_str = "what did Biden say?"
# 创建RAG对象
rag = vectara.as_rag(config)
response = rag.invoke(query_str)
print(response['answer'])
常见问题和解决方案
潜在的挑战
-
网络访问问题:某些地区可能由于网络限制,无法直接访问API。解决方案是使用API代理服务,以提高稳定性。
-
数据安全和隐私:确保在上传数据到平台之前,已遵循相关的隐私和数据保护政策。
解决方案
- 使用安全的网络连接和代理服务确保数据传输的安全性。
- 定期更新API密钥,并使用环境变量来管理敏感信息。
总结与进一步学习资源
通过本文,您可以了解到如何使用Vectara平台来创建一个智能的RAG服务。为了进一步提升技术水平,可以参考以下资源:
参考资料
- Vectara官方文档
- LangChain社区资源
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—