打造您的专属智能AI助手:使用Vectara实现Retrieval-Augmented-Generation

打造您的专属智能AI助手:使用Vectara实现Retrieval-Augmented-Generation

欢迎来到这篇关于如何使用Vectara平台创建一个个性化智能AI助手的文章。在这里,我们将介绍Vectara的主要功能,并提供实用的代码示例,演示如何使用这个强大的平台来实现Retrieval-Augmented-Generation(RAG)。这将帮助您轻松创建一个类似ChatGPT的体验,利用您的数据、文档和知识进行增强。

Vectara简介

Vectara提供了一种被称为RAG-as-a-service的服务,结合了文本提取、向量存储、查询服务和生成式总结,所有这些都是通过简单易用的API提供的。在此过程中,您将能够:

  • 从各种文件格式中提取文本。
  • 使用基于机器学习的chunking来优化文本片段。
  • 存储和检索文本片段的嵌入向量。
  • 利用生成式语言模型(LLM)创建带有引用的总结。

使用Vectara

准备工作

要开始使用Vectara,首先需要注册一个免费账户并获取API密钥。接着,可以在环境变量中设置这些凭证,或直接提供给Vectara实例。

export VECTARA_CUSTOMER_ID="your_customer_id"
export VECTARA_CORPUS_ID="your_corpus_id"
export VECTARA_API_KEY="your-vectara-api-key"

Vectara作为向量存储

您可以使用Vectara作为LangChain的向量存储,通过以下代码创建一个Vectara实例:

from langchain_community.vectorstores import Vectara

vectara = Vectara(
    vectara_customer_id="your_customer_id", 
    vectara_corpus_id="your_corpus_id", 
    vectara_api_key="your-vectara-api-key"
)

您可以添加文本或文件到向量存储中,例如:

vectara.add_texts(["to be or not to be", "that is the question"])
vectara.add_files(["path/to/file1.pdf", "path/to/file2.pdf"])

查询向量存储

使用similarity_search_with_score方法可以查询Vectara存储的内容,查找最相关的文档:

results = vectara.similarity_search_with_score("what is LangChain?")

代码示例

以下是一个完整的示例代码,展示如何使用Vectara进行RAG:

from langchain_community.vectorstores import Vectara
from langchain_community.vectorstores.config import VectaraQueryConfig, SummaryConfig, RerankConfig

# 通过API代理服务提高访问稳定性
vectara = Vectara(
    vectara_customer_id="your_customer_id", 
    vectara_corpus_id="your_corpus_id", 
    vectara_api_key="your-vectara-api-key"
)

summary_config = SummaryConfig(is_enabled=True, max_results=7, response_lang='eng')
rerank_config = RerankConfig(reranker="mmr", rerank_k=50, mmr_diversity_bias=0.2)
config = VectaraQueryConfig(k=10, lambda_val=0.005, rerank_config=rerank_config, summary_config=summary_config)

query_str = "what did Biden say?"

# 创建RAG对象
rag = vectara.as_rag(config)
response = rag.invoke(query_str)

print(response['answer'])

常见问题和解决方案

潜在的挑战

  1. 网络访问问题:某些地区可能由于网络限制,无法直接访问API。解决方案是使用API代理服务,以提高稳定性。

  2. 数据安全和隐私:确保在上传数据到平台之前,已遵循相关的隐私和数据保护政策。

解决方案

  • 使用安全的网络连接和代理服务确保数据传输的安全性。
  • 定期更新API密钥,并使用环境变量来管理敏感信息。

总结与进一步学习资源

通过本文,您可以了解到如何使用Vectara平台来创建一个智能的RAG服务。为了进一步提升技术水平,可以参考以下资源:

参考资料

  • Vectara官方文档
  • LangChain社区资源

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值