在机器学习和自然语言处理任务中,如何有效地选择示例以增强模型的表现是一个重要的挑战。本文将探讨使用语义相似性选择器来选择与输入最相似的示例,从而提高任务的效果。我们将通过代码示例详细展示如何使用这些技术,并讨论在使用过程中可能遇到的挑战和解决方案。
引言
在AI应用中,通过选择与输入数据语义上高度相关的示例可以显著提高模型的准确性。这篇文章将介绍如何使用SemanticSimilarityExampleSelector
类来实现这一目标,并展示如何在一个简单的反义词生成任务中应用它。
主要内容
什么是语义相似性选择器?
语义相似性选择器是一种基于输入的语义相似性来选择最合适示例的技术。其核心原理是计算输入与潜在示例之间的余弦相似性,从而挑选出最佳匹配。这种方法在需要动态调整示例以匹配特定输入的情境中尤为有效。
如何实现语义相似性选择?
我们将使用以下关键组件:
- Chroma: 用于存储和检索向量的库。
- SemanticSimilarityExampleSelector: 为任务挑选最相关的示例。
- OpenAIEmbeddings: 用于计算输入和候选示例的嵌入。
- FewShotPromptTemplate: 用于生成具有动态示例的提示。
这些组件协同工作,帮助我们根据输入选择最相关的示例。
代码示例
以下是一个完整的代码示例,展示如何使用之前提到的类来选择和格式化示例:
from langchain_chroma import Chroma
from langchain_core.example_selectors import SemanticSimilarityExampleSelector
from langchain_core.prompts import FewShotPromptTemplate, PromptTemplate
from langchain_openai import OpenAIEmbeddings
example_prompt = PromptTemplate(
input_variables=["input",