稀疏贝叶斯学习详解--证据和后验概率的计算

本文详细介绍了稀疏贝叶斯学习(SBL)的基本原理,特别是证据和后验概率的计算。通过数学推导,解释了SBL如何用于稀疏信号重构,并探讨了高斯函数、最大似然估计、贝叶斯估计等相关概念。此外,还讨论了如何使用自动相关决策理论(ARD)获取稀疏解,以及如何推导证据和后验概率的分布。
摘要由CSDN通过智能技术生成

 简介

稀疏贝叶斯学习(Sparse Bayesian Learning,SBL)是稀疏信号重构的方法之一,其性能相当于重加权的$\ell_1$范数恢复方法,并且不需要设置正则化参数,在目标定位,生物医学信号提取等方面被广泛应用。但是其涉及复杂的数学知识包括高斯函数、最大似然估计、向量求导、贝叶斯估计、EM算法等让很多人望而却步。笔者在学习此部分内容也曾花费大量时间,为解决小伙伴们的烦恼,本系列文章将详细解读稀疏贝叶斯学习的基本原理及其对应的数学推导,大致分为几块,包括证据和后验概率的计算、EM算法部分推导等。下面先对证据和后验概率的计算推导进行叙述。以下需要用到的数学基础包括高斯函数的基本性质、向量的求导。

 模型

先考虑对一个向量的观测,假设有观测矩阵 $\bm{\Phi}\in C^{N\times M}$,对未知变量$\bm{\omega}\in C^{M\times1}$进行观测,记为

\[\bm{t}=\bm{\Phi}\bm{\omega}+\bm{\epsilon}\qquad(1)\]

式中$t\in C^{N\times1}$,观测矩阵也称之为过完备基,这里假定$\bm{\omega}$是稀疏变量,即$\bm{\omega}$的大部分元素都为0,$\epsilon$ 为观测噪声。SBL要解决的问题是根据已知的$\bm{t}$和${\bm{\Phi}}$估计出$\bm{\omega}$,其实就是稀疏信号的重构。

 

首先解释下贝叶斯公式:

\[p(\omega|t)=\frac{p(t|\omega)p(\omega)}{p(t)}\qquad\]

$p(\omega)$称之为先验概率,表示在观测之前的概率,$p(\omega|t)$称之为后验概率,是观测之后的概率,$p(t|\omega)$是似然概率,在求最大似然估计的时候就是使用的该概率形式,$p(t)$表示证据。很多情况下,我们要估计$\bm{\omega}$可由$argmax_\omega p(\omega|x)$求得,但上述后验概率不易求得。因证据$p(x)$与$\bm{\omega}$无关,上述后验概率最大化可由贝叶斯公式转化为似然概率和先验概率的乘积的最大化求得,即$argmax_\omega p(x|\omega)p(\omega)$。

  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值