稀疏贝叶斯学习

稀疏贝叶斯学习(SBL)是贝叶斯统计优化算法中十分重要的一类,它是在贝叶斯理论的基础上发展而来的。现在贝叶斯学习技术已应用到信息的智能检索,数据挖掘等领域。SBL 算法首先将未知的待估计参数向量看作符合某种先验分布的随机向量,并根据以往对所求参数的知识,确定先验分布;然后根据样本信息,运用贝叶斯规则,计算后验概率分布;最后综合先验信息和后验概率,做出对未知参数的推断。研究人员通过对先验认知与试验样本的深入分析和建模,提出了不同模型的学习算法。其中基于相关向量机(RVM)的监督学习是最热门的方向之一。

 

贝叶斯公式到贝叶斯参数学习

下面给出公式:

p ( θ ∣ x ) = p ( x ∣ θ ) p ( θ ) p ( x ) = p ( x ∣ θ ) p ( θ ) ∫ p ( x ∣ θ ) p ( θ ) d θ p(\theta \vert x) = \frac{p(x\vert \theta) p(\theta)}{p(x)} =\frac{p(x\vert \theta) p(\theta)}{\int p(x\vert \theta) p(\theta) \text{d}\theta}

p(θ∣x)= 

p(x)

p(x∣θ)p(θ)

​ 

 = 

∫p(x∣θ)p(θ)dθ

p(x∣θ)p(θ)

​ 

 

 

所表达的思想是通过观察样本信息,将先验概率密度通过贝叶斯规则转化为后验概率密度。用 x xx 表示随机观测向量,θ \thetaθ 表示未知参数,p ( θ , x ) = p ( x ∣ θ ) p ( θ ) p(\theta,x)=p(x\vert \theta) p(\theta)

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
相关向量机的MATLAB代码,经过验证是正确的,很实用 推荐相关向量机(Relevance vector machine,简称RVM)是Tipping在2001年在贝叶斯框架的基础上提出的,它有着与支持向量机(Support vector machine,简称SVM)一样的函数形式,与SVM一样基于核函数映射将低维空间非线性问题转化为高维空间的线性问题。 RVM原理步骤 RVM通过最大化后验概率(MAP)求解相关向量的权重。对于给定的训练样本集{tn,xn},类似于SVM , RVM 的模型输出定义为 y(x;w)=∑Ni=1wiK(X,Xi)+w0 其 中wi为权重, K(X,Xi)为核函。因此对于, tn=y(xn,w)+εn,假设噪声εn 服从均值为0 , 方差为σ2 的高斯分布,则p ( tn | ω,σ2 ) = N ( y ( xi ,ωi ) ,σ2 ) ,设tn 独立同分布,则整个训练样本的似然函数可以表示出来。对w 与σ2的求解如果直接使用最大似然法,结果通常使w 中的元素大部分都不是0,从而导致过学习。在RVM 中我们想要避免这个现像,因此我们为w 加上先决条件:它们的机率分布是落在0 周围的正态分布: p(wi|αi) = N(wi|0, α?1i ),于是对w的求解转化为对α的求解,当α趋于无穷大的时候,w趋于0. RVM的步骤可以归结为下面几步: 1. 选择适当的核函数,将特征向量映射到高维空间。虽然理论上讲RVM可以使用任意的核函数,但是在很多应用问题中,大部分人还是选择了常用的几种核函 数,RBF核函数,Laplace核函数,多项式核函数等。尤其以高斯核函数应用最为广泛。可能于高斯和核函数的非线性有关。选择高斯核函数最重要的是带 宽参数的选择,带宽过小,则导致过学习,带宽过大,又导致过平滑,都会引起分类或回归能力的下降 2. 初始化α,σ2。在RVM中α,σ2是通过迭代求解的,所以需要初始化。初始化对结果影响不大。 3. 迭代求解最优的权重分布。 4. 预测新数据。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值