POJ 2104 K-th Number

本文详细解析了POJ2104 K-thNumber问题的两种算法解决方案:划分树和归并+二分。通过注释丰富的代码示例,深入探讨了这两种方法的具体实现细节和优化技巧,旨在帮助读者理解和掌握区间查询第k大值问题的高效求解策略。

这个题以前就做过了,用归并树+二分,2000+ms水过了。今天整理资料,zhk提到了划分树,于是去试了一下,经过几次小小的错误,最终过掉了,900+ms。时间效率很高,O(mlogn),是区间查询第k大值的利器。

该总结的东西基本上都写在注释里面了,就不再废话了。

 

ExpandedBlockStart.gifPOJ 2104 K-th Number(划分树)
 1 //从源序列开始,首先用buffer将此序列排序。
 2 //每次划分的时候按照中点值将元素按照大小分别排在左子树和右子树,相当于一个排序的过程,用数组val记录。
 3 //在划分的时候用数组toLeft记录每次划分时被分到左子树的元素的数目。
 4 
 5 #include <stdio.h>
 6 #include <string.h>
 7 #include <algorithm>
 8 
 9 const int MaxN = 100010;
10 int val[20][MaxN], toLeft[20][MaxN];
11 int srt[MaxN];
12 int M, N;
13 
14 struct Node {
15     int l, r;
16 }node[MaxN<<3];
17 
18 inline int L(int x) {return (x<<1)+1;}
19 inline int R(int x) {return (x<<1)+2;}
20 
21 void build_tree(int s, int e, int cur_row, int id) {
22     node[id].l = s; node[id].r = e;
23     if(s == e)
24         return;
25     int mid = (s+e)>>1;
26     int emN = mid + 1 - s;
27     for(int i = s; i <= e; ++i) {        //记录与中位数相同的元素被分到左子树的数目。
28         if(val[cur_row][i] < srt[mid])    //因为这些元素有可能被分到左子树,也有可能被分到右子树。
29             emN--;                        //记录这个值便于后面的操作。
30     }
31     int lp = s, rp = mid+1;
32     for(int i = s; i <= e; ++i) {        //计算被划分到左子树的元素个数。
33         toLeft[cur_row][i] = i!=s?toLeft[cur_row][i-1]:0;
34         if(val[cur_row][i] < srt[mid]) {
35             val[cur_row+1][lp++= val[cur_row][i];
36             toLeft[cur_row][i]++;
37         }
38         else if(val[cur_row][i] > srt[mid])
39             val[cur_row+1][rp++= val[cur_row][i];
40         else if(emN) {                    //当emN计数为0时,划分到左子树的中位数元素划分完毕。
41             val[cur_row+1][lp++= val[cur_row][i];
42             toLeft[cur_row][i]++;
43             emN--;
44         }
45         else
46             val[cur_row+1][rp++= val[cur_row][i];
47     }
48     build_tree(s, mid, cur_row + 1, L(id));            //递归建树。
49     build_tree(mid+1, e, cur_row + 1, R(id));
50 }
51 
52 //{[left part][query interval][right part]}        此为树的一个节点
53 //{[(LL)(RL)][(LI)(RI)][right part]}        
54 //        LL:划分到左子树的左边部分;    RL:划分到右子树的左边部分
55 //        LI:划分到左子树的中间部分;    RL:划分到右子树的中间部分
56 //根据以上信息判断在哪个子树进行查询,并且重新计算query interval, 递归查询即可。
57 
58 int query(int s, int e, int k, int cur_row, int id) {
59     if(s == e)                    
60         return val[cur_row][s];
61     int LL = s==node[id].l?0:toLeft[cur_row][s-1];    //计算LL, LI
62     int LI = toLeft[cur_row][e] - LL;
63     if(k <= LI)
64         return query(node[id].l+LL, node[id].l+LL+LI-1, k, cur_row+1, L(id));
65     int mid = (node[id].l + node[id].r) >> 1;
66     int RL = s - node[id].l - LL;                    //计算RL, RI
67     int RI = e + 1 - s - LI;
68     return query(mid+1+RL, mid+1+RL+RI-1, k - LI, cur_row+1, R(id)); 
69 }
70 
71 int main() {
72     while(scanf("%d%d"&N, &M) == 2) {
73         for(int i = 0; i < N; ++i) {
74             scanf("%d", srt+i);
75             val[0][i] = srt[i];
76         }
77         std::sort(srt, srt + N);
78         build_tree(0, N-100);
79         int s, e, k;
80         for(int i = 0; i < M; ++i) {
81             scanf("%d%d%d"&s, &e, &k);
82             printf("%d\n", query(s-1, e-1, k, 00));
83         }
84     }
85     return 0;
86 }
87 

 

 

ExpandedBlockStart.gifPOJ 2104 K-th Number(归并+二分)
 1 #include <stdio.h>
 2 #include <string.h>
 3 #include <algorithm>
 4 
 5 using namespace std;
 6 
 7 inline int MID(int s, int e) {return (s+e)>>1;}
 8 
 9 const int MaxN = 100010;
10 int merge_tree[20][MaxN], n, m, dep[MaxN];
11 int u, v, k, flag;
12 
13 void Merge(int begin, int end, int d) {
14     if(begin + 1 == end) {
15         merge_tree[d][begin] = merge_tree[0][begin];
16         dep[begin] = d; 
17         return;
18     }
19     int Mid = MID(begin, end);
20     Merge(begin, Mid, d + 1);
21     Merge(Mid, end, d + 1);
22     int i, j, k;
23     for(i = begin, j = Mid, k = begin; i != Mid && j != end;) {
24         if(merge_tree[d+1][i] < merge_tree[d+1][j])
25             merge_tree[d][k++= merge_tree[d+1][i++];
26         else
27             merge_tree[d][k++= merge_tree[d+1][j++];
28     }
29     if(i != Mid) {
30         for(; i != Mid; ++i) merge_tree[d][k++= merge_tree[d+1][i];
31     }
32     if(j != end) {
33         for(; j != end; ++j) merge_tree[d][k++= merge_tree[d+1][j];
34     }
35 }
36 
37 int search(int begin, int end, int s, int e, int x, int d) {
38     int Mid;
39     if(s == begin && end == e) {
40         if(x > merge_tree[d][end-1])
41             return end - begin;
42         if(x < merge_tree[d][begin])
43             return 0;
44         int u = begin - 1, v = end;
45         while(u+1 < v) {
46             Mid = MID(u, v);
47             if(merge_tree[d][Mid] <= x) {
48                 if(merge_tree[d][Mid] == x)
49                     flag++;
50                 u = Mid;
51             }
52             else
53                 v = Mid;
54         }
55         return u - begin + 1;
56     }
57     Mid = MID(begin, end);
58     if(s >= Mid)
59         return search(Mid, end, s, e, x, d+1);
60     if(e <= Mid)
61         return search(begin, Mid, s, e, x, d+1);
62     return search(begin, Mid, s, Mid, x, d+1+ search(Mid, end, Mid, e, x, d+1);
63 }
64 
65 void work() {
66     int begin = -1, end = n, Mid;
67     while(begin + 1 < end) {
68         Mid = MID(begin, end);
69         flag = 0;
70         int sum = search(0, n, u, v+1, merge_tree[0][Mid], 0);
71         if(flag && sum - flag < k && sum >= k) {
72             printf("%d\n", merge_tree[0][Mid]);
73             return;
74         }
75         else if(sum < k)
76             begin = Mid;
77         else
78             end = Mid;
79     }
80 }
81 
82 int main() {
83     while(scanf("%d%d"&n, &m) != EOF) {
84         for(int i = 0; i < n; ++i) scanf("%d", merge_tree[0+ i);
85         Merge(0, n, 0);
86         for(int i = 0; i < m; ++i) {
87             scanf("%d%d%d"&u, &v, &k);
88             u--; v--;
89             work();
90         }
91     }
92     return 0;
93 }
94 

 

 

转载于:https://www.cnblogs.com/destinydesigner/archive/2010/12/05/1896959.html

**项目名称:** 基于Vue.js与Spring Cloud架构的博客系统设计与开发——微服务分布式应用实践 **项目概述:** 本项目为计算机科学与技术专业本科毕业设计成果,旨在设计并实现一个采用前后端分离架构的现代化博客平台。系统前端基于Vue.js框架构建,提供响应式用户界面;后端采用Spring Cloud微服务架构,通过服务拆分、注册发现、配置中心及网关路由等技术,构建高可用、易扩展的分布式应用体系。项目重点探讨微服务模式下的系统设计、服务治理、数据一致性及部署运维等关键问题,体现了分布式系统在Web应用中的实践价值。 **技术架构:** 1. **前端技术栈:** Vue.js 2.x、Vue Router、Vuex、Element UI、Axios 2. **后端技术栈:** Spring Boot 2.x、Spring Cloud (Eureka/Nacos、Feign/OpenFeign、Ribbon、Hystrix、Zuul/Gateway、Config) 3. **数据存储:** MySQL 8.0(主数据存储)、Redis(缓存与会话管理) 4. **服务通信:** RESTful API、消息队列(可选RabbitMQ/Kafka) 5. **部署与运维:** Docker容器化、Jenkins持续集成、Nginx负载均衡 **核心功能模块:** - 用户管理:注册登录、权限控制、个人中心 - 文章管理:富文本编辑、分类标签、发布审核、评论互动 - 内容展示:首页推荐、分类检索、全文搜索、热门排行 - 系统管理:后台仪表盘、用户与内容监控、日志审计 - 微服务治理:服务健康检测、动态配置更新、熔断降级策略 **设计特点:** 1. **架构解耦:** 前后端完全分离,通过API网关统一接入,支持独立开发与部署。 2. **服务拆分:** 按业务域划分为用户服务、文章服务、评论服务、文件服务等独立微服务。 3. **高可用设计:** 采用服务注册发现机制,配合负载均衡与熔断器,提升系统容错能力。 4. **可扩展性:** 模块化设计支持横向扩展,配置中心实现运行时动态调整。 **项目成果:** 完成了一个具备完整博客功能、具备微服务典型特征的分布式系统原型,通过容器化部署验证了多服务协同运行的可行性,为云原生应用开发提供了实践参考。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值