题目描述
山脚下有一个较为平坦的山路,共有N棵美人松,光头强打算利用这些美人松修建一条索道。这条索道中间高两头低,可以放弃一些美人松,但是光头强必须选择第K棵美人松作为索道的最高点。求建造这样的索道最多可以利用多少棵美人松。
输入格式
第一行两个正整数N和K。
第二行,N 个整数,表示从左往右各美人松的高度。
输出格式
一个整数,表示建造这样的索道利用美人松最大数。
输入输出样例
输入样例1:
10 6
1 3 2 4 2 5 6 3 4 1
输出样例1:
6
说明
N<=3000
提示说明
样例中,第6个数是5必选,作为最高点,可以选择 1 3 4 5 3 1。极端情况下,结果可能为1。
【解析】
1:这道题看成是两遍LIS问题即可,模板代码。
#include<bits/stdc++.h>
using namespace std;
int a[4000];
int dp[4000];
int main(){
int n,k;
cin>>n>>k;
for(int i=1;i<=n;i++){
cin>>a[i];
dp[i]=1;
}
int ans=0;
//计算第1~k棵树之间选择哪几棵树
for(int i=1;i<=k;i++){
for(int j=1;j<i;j++){
if(a[j]<a[i]){
dp[i]=max(dp[j]+1,dp[i]);
}
}
}
ans+=dp[k];
dp[k]=1;//细节
//计算k~n之间选择哪几棵树,倒序看也是LIS问题
for(int i=n;i>=k;i--){
// dp[i]=1;
for(int j=i+1;j<=n;j++){
if(a[j]<a[i]){
dp[i]=max(dp[i],dp[j]+1);
}
}
}
ans+=dp[k];
cout<<ans-1;
return 0;
}