凸优化

凸优化

梯度下降法和牛顿法等基于导数作为判据的优化算法,找到的都导数/梯度为 0 的点,而梯度等于 0 只是取得极值的必要条件而不是充分条件。即局部最优解不一定是全局最优解。

凸优化问题——满足下面两个限制条件的最优化问题。

  • 目标函数是凸函数;

  • 优化变量的可行域是凸集;

凸优化问题——局部最优解一定是全局最优解。

凸集

对于 n 维空间中点的集合 C,如果对集合中的任意两点 x 和 y,以及实数 0 ≤ θ ≤ 1,都有:

则称该集合称为凸集。

n 维实向量空间 $R^n$

显然如果 $x , y \in R ^ { n }$,则有:

结论:如果一个优化问题是不带约束的优化,则其优化变量的可行域是一个凸集。

仿射子空间

给定 m 行 n 列的矩阵 A 和 m 维向量 b,仿射子空间定义为如下向量的集合:

实际上,它就是非齐次线性方程组的解。

证明:仿射子空间是凸集

假设 $x , y \in R ^ { n }$ 并且 $A x = b , A y = b$,对于任意 $0 \leq \theta \leq 1$,有:

结论:如果一组约束是线性等式约束,则它确定的可行域是一个凸集。

多面体

多面体定义为如下向量的集合:

实际上,它就是线性不等式围成的区域。

证明:多面体是凸集

结论:如果一组约束是线性不等式约束,则它定义的可行域是凸集

证明:多个凸集的交集还是凸集

假设 $C _ { 1 } , \ldots , C _ { k }$ 为凸集,它们的交集为 $\bigcap _ { i = 1 } ^ { k } C i$。对于任意点 $X , Y \in \bigcap _ { i = 1 } ^ { k } C i$,并且 $0 \leq \theta \leq 1$,由于 $C _ { 1 } , \ldots , C _ { k }$ 为凸集,所以有:

由此:

结论:如果每个等式或者不等式约束条件定义的集合都是凸集,那么这些条件联合起来定义的集合还是凸集。

注意:凸集的并集并不是凸集。

下水平集

给定一个凸函数以及一个实数 $\alpha$,函数的 $\alpha$ 下水平集(sub-level set)定义为函数值小于等于 $\alpha$ 的点构成的集合:

该集合是一个凸集。用于确保优化问题中一些不等式约束条件定义的可行域是凸集,如果是凸函数构成的不等式,则是凸集。

凸函数

在函数的定义域内,如果对于任意的 x、y,以及实数 $0 \leq \theta \

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值