ESPRIT算法

ESPRIT算法详解及实现

打算把这个课程里的大部分代码都整理下。

ESPRIT算法

ESPRIT算法,estimating signal parameter via rotational invariance techniques,中文名“基于旋转不变技术的信号参数估计”。

同样的,和Musci,Root-Music算法一样,这类基于相关矩阵特征分解的信号频率估计方法,书上都是基于复正弦加白噪声信号模型:

                                                                 

  • 根据M个时刻的观测值可以表示出向量形式,x(n)=As(n)+v(n);然后定义y(n)=x(n+1),同理写出矩阵形式,并找出y(n)和s(n)的关系:

                                                         

       这里的φ是e^(-jwK)组成的对角矩阵。

  • 求x(n)的自相关(与y(n)的自相关是相等的)和与y(n)的互相关;然后对Rxx进行特征值分解,然后定义两个矩阵:

           

  • 对上面那个矩阵对放在一起并求广义特征值,然后由非零解和矩阵是否奇异得出秩的关系:

                                                            

  • 所以广义特征值恰为φ^H的对角元,其与信号频率有关。

ESPRIT算法代码:在代码中由于相关矩阵都是估计的,对矩阵对进行广义特征值分解时,取的是最接近圆的K个广义特征值。K是由输入向量里有多少个频率得出的。

clear all,close all
N=1000;%样本数
noise=(rand(1,N)+1i*rand(1,N))/sqrt(2);
n=1:1:N;
un(n)=exp(1i*0.5*pi*n+1i*2*pi*rand(1))+exp(-1i*0.3*pi*n+1i*2*pi*rand(1))+noise;
%% 构造自相关矩阵
M=8;
for k=1:N-M
xs(:,k)=un(k+M-1:-1:k).'; %从 k+m-1 一直减到 k 并变为列向量
end
Rxx=xs(:,1:end-1)*xs(:,1:end-1)'/(N-M-1);
Rxy=xs(:,1:end-1)*xs(:,2:end)'/(N-M-1);
%% 利用奇异分解找到最小特征值
[V,D]=svd(Rxx);
ev=diag(D);emin=ev(end);
%% 构造矩阵对,并对其进行特征分解
z=[zeros(M-1,1),eye(M-1);0,zeros(1,M-1)];
Cxx=Rxx-emin*eye(M);
Cxy=Rxy-emin*z;
[V,D]=eig(Cxx,Cxy);
z=diag(D);
w=angle(z)/(2*pi);
err=abs(abs(z)-1);
[Enew,ad] = sort(err); %对其排序,小到大排列
w(ad([1,3]))

### 原理与实现 ESPRIT(Estimation of Signal Parameters via Rotational Invariance Techniques)是一种用于参数估计的高分辨率信号处理技术,特别适用于方向到达角(DOA)估计问题。其核心思想是利用阵列天线中子阵列之间的旋转不变性关系来提取信号源的方向信息[^1]。 在具体实现中,首先将接收信号通过一个均匀线性阵列(ULA),并将其划分为两个互为平移的子阵列。这两个子阵列共享相同的信号空间但具有不同的噪声空间,这种结构使得可以构造出一个旋转不变矩阵 $\Psi$,该矩阵满足以下关系: $$ \mathbf{S}_2 = \mathbf{\Psi} \mathbf{S}_1 $$ 其中 $\mathbf{S}_1$ 和 $\mathbf{S}_2$ 分别表示两个子阵列对应的信号子空间。通过对协方差矩阵进行特征值分解,可以获得信号子空间和噪声子空间。接着使用最小二乘法或总体最小二乘法求解 $\Psi$ 矩阵,并对其特征值进行分析以获得信号源的角度估计[^2]。 下面是一个简化的MATLAB代码示例,展示了如何实现基本的ESPRIT算法: ```matlab % 参数设置 numElements = 8; % 天线元素数量 numSignals = 2; % 信号源数量 snr = 10; % 信噪比(dB) theta = [30, 60]; % 真实角度(度) % 构建阵列流形矩阵 d = 0.5; % 阵元间距与波长的比例 phi = sind(theta); % 正弦角度 for k = 0:numElements-1 A(k+1,:) = exp(-1j*2*pi*d*k * phi); end % 生成数据 x = A * randn(numSignals, N) + (1/sqrt(2)) * randn(numElements, N); % 计算协方差矩阵 Rxx = x * x' / N; % 特征值分解 [V,D] = eig(Rxx); [~,idx] = sort(diag(D),'descend'); V = V(:,idx); % 提取信号子空间 Us = V(:,1:numSignals); % 子阵列划分 U1 = Us(1:end-1,:); U2 = Us(2:end,:); % 求解Ψ矩阵 Psi = U2 / U1; % 获取Ψ的特征值 eigVals = eig(Psi); % 转换为角度 angles = angle(eigVals) * 180 / pi / (2 * pi * d); ``` ### 应用领域 由于ESPRIT算法对阵列结构的要求相对较低,同时能够在较小样本数和较高噪声条件下保持优良性能,因此它被广泛应用于雷达、声纳、通信以及天文观测等多个领域。此外,随着对信号处理需求的不断提高,研究人员还开发了多种扩展版本,例如推广到二维或三维DOA估计、结合稀疏优化技术以提升分辨能力,以及适应动态场景的实时处理等。这些进展进一步拓宽了ESPRIT算法的应用范围,增强了其实用价值。 进入21世纪后,随着移动通信和无线网络的发展,阵列信号处理技术演进为MIMO系统,极大提高了无线通信的容量和可靠性。在此背景下,ESPRIT算法也得到了更深入的研究和发展,成为现代通信系统中不可或缺的一部分[^3]。
评论 16
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值