ESPRIT算法

打算把这个课程里的大部分代码都整理下。

ESPRIT算法

ESPRIT算法,estimating signal parameter via rotational invariance techniques,中文名“基于旋转不变技术的信号参数估计”。

同样的,和Musci,Root-Music算法一样,这类基于相关矩阵特征分解的信号频率估计方法,书上都是基于复正弦加白噪声信号模型:

                                                                 

  • 根据M个时刻的观测值可以表示出向量形式,x(n)=As(n)+v(n);然后定义y(n)=x(n+1),同理写出矩阵形式,并找出y(n)和s(n)的关系:

                                                         

       这里的φ是e^(-jwK)组成的对角矩阵。

  • 求x(n)的自相关(与y(n)的自相关是相等的)和与y(n)的互相关;然后对Rxx进行特征值分解,然后定义两个矩阵:

           

  • 对上面那个矩阵对放在一起并求广义特征值,然后由非零解和矩阵是否奇异得出秩的关系:

                                                            

  • 所以广义特征值恰为φ^H的对角元,其与信号频率有关。

ESPRIT算法代码:在代码中由于相关矩阵都是估计的,对矩阵对进行广义特征值分解时,取的是最接近圆的K个广义特征值。K是由输入向量里有多少个频率得出的。

clear all,close all
N=1000;%样本数
noise=(rand(1,N)+1i*rand(1,N))/sqrt(2);
n=1:1:N;
un(n)=exp(1i*0.5*pi*n+1i*2*pi*rand(1))+exp(-1i*0.3*pi*n+1i*2*pi*rand(1))+noise;
%% 构造自相关矩阵
M=8;
for k=1:N-M
xs(:,k)=un(k+M-1:-1:k).'; %从 k+m-1 一直减到 k 并变为列向量
end
Rxx=xs(:,1:end-1)*xs(:,1:end-1)'/(N-M-1);
Rxy=xs(:,1:end-1)*xs(:,2:end)'/(N-M-1);
%% 利用奇异分解找到最小特征值
[V,D]=svd(Rxx);
ev=diag(D);emin=ev(end);
%% 构造矩阵对,并对其进行特征分解
z=[zeros(M-1,1),eye(M-1);0,zeros(1,M-1)];
Cxx=Rxx-emin*eye(M);
Cxy=Rxy-emin*z;
[V,D]=eig(Cxx,Cxy);
z=diag(D);
w=angle(z)/(2*pi);
err=abs(abs(z)-1);
[Enew,ad] = sort(err); %对其排序,小到大排列
w(ad([1,3]))

### Esprit算法概述 Esprit(Estimation of Signal Parameters via Rotational Invariance Techniques)是一种用于信号参数估计的方法,尤其适用于多径传播环境下的信道建模和频谱分析。该方法利用阵列天线接收到的数据之间的旋转不变特性来提高分辨率和精度[^1]。 ### IT领域中的应用 在IT领域,Esprit算法被广泛应用于无线通信系统的多个方面: - **MIMO系统优化**:通过精确估计到达角(Angle of Arrival, AoA),可以显著提升多输入多输出(MIMO)系统的性能,在复杂电磁环境中保持良好的传输质量[^2]。 - **雷达目标检测与跟踪**:能够有效区分来自不同方向的目标反射波,从而实现高分辨力的距离像获取以及运动物体轨迹重建等功能[^3]。 - **声纳定位技术**:借助水下传感器网络部署,可完成对海洋生物活动规律监测、潜艇隐蔽航行探测等任务;同时也能服务于民用市场如港口安全监控等领域[^4]。 - **射电天文观测**:对于遥远星体发出微弱无线电波的研究具有重要意义,有助于科学家们更深入理解宇宙结构及其演化过程[^5]。 ### 实现方式 为了便于理解和实践操作,下面给出一段基于Python语言编写的简化版Esprit算法代码示例,主要用于演示如何计算两个子空间基向量间的相位差以获得角度信息: ```python import numpy as np from scipy.linalg import svd def esprit_algorithm(received_signals, num_sources): # 假设已知接收矩阵received_signals (Nt x Ns),其中Nt表示时间样本数,Ns为源数量 # 构造数据协方差矩阵Rxx=E{xx^H} Rxx = received_signals @ received_signals.conj().T / received_signals.shape[1] # 对Rxx做特征分解得到U=[Us Up], s=diag(S), p=N-Ns U, S, _ = svd(Rxx) Us = U[:, :num_sources] # 定义前半部分和后半部分的空间投影算子Pf, Pb Pf = Us[:-1, :] Pb = Us[1:, :] # 计算互相关矩阵C=Pb*inv(Pf) C = Pb @ np.linalg.inv(Pf) # 特征值求解得出频率偏移因子exp(-jw*Tau) eigenvalues = np.linalg.eigvals(C) angles = [] for val in eigenvalues: angle = np.angle(val)/(np.pi/180)*90 # 将弧度转换成角度范围[-90°,+90°] angles.append(angle) return angles ``` 此函数接受一组由均匀线性阵列收集到的时间序列作为输入,并返回各个入射波束对应的方位角列表。需要注意的是这只是一个非常基础的例子,在实际工程应用中还需要考虑更多因素比如噪声抑制、模型阶次选取等问题。
评论 16
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值