自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(286)
  • 资源 (3)
  • 收藏
  • 关注

原创 软考(软件设计师)计算机网络-网络层

本文通过图解和序列图展示了网络通信中ARP协议的工作原理。当设备A要与设备B通信时,首先检查ARP缓存是否存在目标MAC地址,若不存在则发起ARP广播请求。在同一网络内,目标设备会响应请求;若跨网络,则通过路由器转发,每跳路由器都会更新MAC地址并转发数据包,直至到达目标设备。整个过程涉及ARP缓存更新、IP包封装解封装以及多跳路由选择,最终实现端到端通信。

2025-07-12 04:25:18 961

原创 软考(软件设计师)计算机网络-物理层,数据链路层

计算机网络性能与体系结构摘要 网络分类: LAN(建筑级):高速(Gbps)、低延迟,采用以太网/WiFi MAN(城市级):光纤/MPLS技术,中高速(Mbps~Gbps) WAN(广域):高延迟,依赖运营商(SDH/MPLS),成本高 性能指标: 速率/带宽(bit/s)、吞吐量(实际传输量) 时延=发送时延+传播时延+处理/排队时延 时延带宽积=传播时延×带宽(信道容量指标) 体系结构: 物理层:比特传输(双绞线/光纤/无线),定义802.3/802.11等协议 数据链路层:帧封装(首尾定界)、透明传

2025-07-10 15:39:54 641

原创 软考(软件设计师)软件工程-软件质量,软件测试,McCabe圈复杂度

本文探讨了软件质量评估和测试的核心概念与方法。ISO/IEC 9126标准将软件质量分解为六大特性(功能性、可靠性、易用性、效率、维护性和可移植性),每个特性包含可度量的子特性。软件测试则遵循金字塔模型,从单元测试到验收测试分层验证。McCabe圈复杂度通过控制流图分析代码复杂性,帮助识别高风险模块。这些方法共同构成了软件质量保障的理论基础和实践框架,即使在敏捷开发时代仍具重要价值。

2025-07-10 05:15:26 984

原创 软考(软件设计师)软件工程-成本评估模型,软件能力成熟度,软件配置管理

本文介绍了两种经典的软件成本评估模型和软件能力成熟度框架。 成本评估模型部分详细分析了Putnam模型和COCOMO模型的应用。Putnam模型通过具体案例展示了如何计算开发工作量、人力资源分布和成本预算,揭示了工期、技术与人力之间的制约关系。COCOMO模型则分为三个层次(基本、中级、详细)和COCOMO II的三个阶段模型,适应不同开发阶段的需求估算。 软件能力成熟度部分简要介绍了CMM的起源背景和5级成熟度模型框架,由美国国防部委托开发,旨在解决软件项目常见的管理问题。 这些模型为软件项目管理提供了量

2025-07-10 04:13:37 906

原创 软考(软件设计师)软件工程-软件过程模型,敏捷开发

fill:#333;color:#333;color:#333;fill:none;敏捷开发方法XPCrystalScrumASDAgileUP严格流程, 适应性灵活适配, 以人为本迭代增量, 自组织动态适应, 试错学习轻量UP, 结构化迭代。

2025-07-08 21:47:17 1093

原创 软考(软件设计师)数据库原理-数据库规范化理论,四大范式,完整性约束

关系数据库规范化理论与完整性约束 摘要:关系数据库规范化通过1NF、2NF、3NF和BCNF等范式消除数据冗余和异常,1NF要求字段原子性,2NF消除部分依赖,3NF消除传递依赖,BCNF要求依赖左边包含候选键。完整性约束包括实体完整性(主键/唯一约束)、参照完整性(外键约束)、域完整性(数据类型/检查约束)和用户定义完整性(触发器/存储过程),确保数据一致性和准确性。规范化平衡了数据一致性与查询性能,实际应用中需根据业务需求选择合适的范式级别。(149字)

2025-07-08 19:09:20 669

原创 软考(软件设计师)数据库原理:事务管理,备份恢复,并发控制

数据库事务管理与备份恢复摘要 数据库事务管理通过ACID特性确保数据完整性:原子性保证操作全成功或全失败,一致性维护约束,隔离性处理并发访问,持久性确保提交结果永久保存。事务控制包括开启、提交和回滚操作,并发问题如脏读、幻读可通过隔离级别解决。备份策略分为物理/逻辑备份,包含全量、增量、差异备份,高可用架构采用主从复制和异地容灾。恢复流程涉及基础备份、差异备份和事务日志的逐步应用,时间点恢复可精确还原特定状态。并发控制技术包括锁机制、MVCC和乐观控制,解决多用户访问时的数据一致性问题。

2025-07-08 18:11:43 858

原创 软考(软件设计师)数据库原理-SQL

SQL常用数据类型与查询语法速览 本文提供SQL核心知识点的快速参考指南,包含: 数据类型速查表:涵盖整数、小数、字符串、日期等8大类20余种常用数据类型及其适用场景 SQL查询语法解析:详细说明SELECT、FROM、JOIN等关键字的执行逻辑,通过数据案例展示查询前后的变化 可视化辅助:包含表格对比和流程图展示GROUP BY等操作的执行过程 实用示例:提供可直接使用的代码片段,如INNER JOIN连接、WHERE过滤等典型场景的实现 特别适合需要快速查阅SQL语法细节的开发者和数据分析人员。内容精炼

2025-07-08 16:37:50 1319

原创 软考(软件设计师)数据库原理-关系代数

关系代数摘要 关系代数是一种过程性查询语言,基于集合操作对关系(二维表)进行查询。其核心包括5种基本操作:选择(σ)用于行过滤,投影(Π)用于列选取,并集(∪)、差集(-)用于集合运算,笛卡尔积(×)用于表连接。此外还有扩展操作如交(∩)、连接(⋈)等。这些操作会产生新的关系,其中选择是水平操作,投影是垂直操作,连接由笛卡尔积和选择组合实现。关系代数作为SQL的理论基础,强调操作的过程性和集合特性,所有操作对象和结果都是完整的关系。

2025-07-08 02:24:43 562

原创 软考(软件设计师)数据库原理:三级模式结构,ER模型

数据库三级模式结构是实现数据独立性的核心框架,包含外模式(用户视图)、概念模式(全局逻辑)和内模式(物理存储)三个层次,通过两级映射实现逻辑与物理独立性。ER模型则描述了数据概念结构,包含实体(分强/弱实体)、属性(简单/复合/派生等)和关系三大要素,通过不同图形符号表示业务关联。这两种模型共同构建了数据库系统的理论基础,分别从系统实现和概念设计角度支持数据管理需求。

2025-07-08 02:19:03 646

原创 软考(软件设计师)存储管理—存储空间管理,文件共享保护

摘要 本文介绍了三种文件存取方法和四种存储空间管理技术。文件存取方法包括顺序存取(适用于磁带和日志)、直接存取(随机访问任意位置)和索引存取(通过索引表快速定位)。存储空间管理技术重点分析了位示图法(二进制位管理磁盘块)、空闲链表法(物理链表连接空闲块)、空闲区表法(记录连续空闲区域)和成组链接法。其中,位示图法以32KB管理1TB磁盘为例,详细展示了分配/释放操作流程和地址转换计算,并对比了优缺点。空闲区表法则通过16块磁盘的示例,演示了连续空间的分配、释放与合并机制。这些方法各有适用场景,需根据实际需求

2025-07-07 19:49:43 862

原创 软考(软件设计师)存储管理—设备管理,磁盘调度

I/O软件的核心目标是。printffread好的!这些I/O技术的诞生均源于。

2025-07-07 17:46:20 784

原创 软考(软件设计师)存储管理—虚拟存储器管理,页面置换算法

虚拟存储器是一种,它使应用程序认为自己拥有连续可用的内存(一个连续完整的地址空间),而实际上物理内存被分割成多个片段,部分暂时存储在外部磁盘上,在需要时进行数据交换。

2025-07-07 16:44:02 641

原创 软考(软件设计师)存储管理—分区,分页,分段,段页式存储管理

内存管理技术主要包括分区存储管理和分页存储管理。分区存储分为固定分区和动态分区:固定分区管理简单但内部碎片严重,适用于嵌入式系统;动态分区灵活匹配作业需求但外部碎片问题突出,需借助紧凑技术解决。分页存储管理通过页表实现逻辑地址到物理地址的转换,采用快表(TLB)加速访问,二级页表结构有效节省内存空间。分页系统支持权限隔离和进程隔离,通过多级页表转换流程实现高效内存访问。典型32位系统中,虚拟地址通过页目录索引、页表索引和页内偏移三级转换得到物理地址。

2025-07-07 16:39:18 696

原创 软考(软件设计师)进程管理—死锁,RAG,银行家算法

摘要: 死锁是指多个进程因争夺资源而陷入相互等待的状态,其发生需满足互斥、持有并等待、非抢占和循环等待四个条件。处理死锁的策略包括:预防(破坏必要条件)、避免(如银行家算法动态检查)、检测与恢复(允许死锁后解除)。资源分配图(RAG)可通过化简判断是否存在死锁环路。 银行家算法通过维护资源分配矩阵(Max、Allocation、Need)和可用资源向量(Available),动态评估资源请求的安全性。安全性算法寻找安全序列,确保系统不会进入不安全状态;资源请求算法则验证请求合法性后模拟分配,仅安全时批准。该

2025-07-07 05:46:46 942

原创 软考(软件设计师)进程管理—管程与进程调度

批处理系统:SJF或MLFQ(最大化吞吐量)交互式系统:RR或多级反馈队列(优化响应时间)实时系统:EDF/RMS(保证截止时间)通用系统:CFS类公平调度(平衡效率与公平)

2025-07-07 04:55:24 762

原创 软考(软件设计师)进程管理—进程基本概念,信号量与PV操作

进程。

2025-07-06 23:26:49 874

原创 软考(软件设计师)差错控制,奇偶校验,循环冗余校验,海明码

差错控制技术摘要 差错控制是保障数据通信和存储可靠性的关键技术,通过引入冗余校验信息实现错误检测与纠正。其核心机制包括: 差错类型:分为单比特错误和突发错误(连续多比特错误)。 关键方法: 奇偶校验:通过1的奇偶性检测奇数位错误,码距为2。 CRC校验:利用多项式除法生成校验码,可高效检测突发错误。 海明码:通过校验位交叉覆盖实现单比特纠错(码距3)和双比特检错。 实现原理:发送端添加校验位生成编码,接收端通过比对/解码判断错误。系统可靠性取决于码距设计,码距越大,纠错能力越强。 典型应用包括网络通信(CR

2025-07-06 22:00:20 764

原创 二进制运算

二进制运算包括算术运算(加、减、乘、除,遵循逢二进一/借一当二规则)、逻辑运算(AND, OR, NOT, XOR,逐位操作)和移位运算(左移、逻辑右移、算术右移)。这些运算是计算机硬件工作的基石,所有复杂的计算和数据处理最终都通过这些基本的二进制操作组合完成。理解它们是深入理解计算机工作原理和进行底层编程的基础。

2025-07-06 21:12:06 794

原创 软考(软件设计师)计算机可靠性

可维护性: 给定条件下,在规定时间间隔内,使用规定的过程和资源完成维护活动的概率。1/(1+MTTR),MTTR(平均修复时间)可用性: 给定时间点上,一个系统,能够按照规格说明正确运行的概率。MTBF/(1+MTBF),MTBF(平均失效间隔时间)可靠性: 系统对于给定时间间隔内、在给定条件下无失效运作的概率,MTTF/(1+MTTF),MTTF(平均无故障时间)可用性是衡量系统可提供服务的时间比例。因此,从一次故障结束到下一次故障开始的总时间大致是。但严格来说,MTBF 特指。

2025-07-06 18:13:22 778

原创 软考(软件设计师)总线系统知识点

fill:#333;color:#333;color:#333;fill:none;总线系统按层级划分按传输方式划分按专用性划分核心性能指标内部总线系统总线外部总线并行总线串行总线通用总线专用总线总线宽度总线带宽。

2025-07-06 17:05:17 932

原创 软考(软件设计师)磁盘工作原理

类似,只是第6步变为:控制器将要写入的数据编码成电信号驱动磁头,改变磁道目标扇区的磁性。,只需切换激活的磁头(电子切换,极快)和等待碟片旋转。理解磁道、扇区、柱面以及存取时间的三驾马车,是掌握机械硬盘工作原理和性能特点的核心钥匙。理解磁道、扇区、柱面以及存取时间的三驾马车,是掌握机械硬盘工作原理和性能特点的核心钥匙。碟片位密度、转速、磁头技术、所在磁道(外圈快)、接口带宽(通常不是瓶颈)。同步信息、扇区地址(柱面号、磁头号、扇区号)、纠错码 (ECC)。每个碟面(上下)都有一个独立的磁头。

2025-07-05 01:12:42 1017

原创 软考(软件设计师)层次化存储

Cache是计算机存储体系结构(寄存器 -> Cache -> 主存 -> 辅存)中不可或缺的一环。它利用SRAM的高速度和程序的局部性原理,将CPU最可能需要的数据副本保存在离CPU最近的地方。通过多级缓存(L1/L2/L3)、缓存行、地址映射、替换策略、写策略以及一致性协议(多核)等关键技术,Cache极大地弥合了CPU与主存之间的速度鸿沟,是现代计算机高性能的核心保障之一。可以说,没有Cache,就没有现代高速计算机。

2025-07-05 00:34:41 464

原创 软考(软件设计师)Flynn分类法知识点梳理

核心价值:Flynn分类法提供了分析并行计算的基本框架发展趋势:现代处理器多为混合架构,结合多种并行模式Flynn分类法虽然简单,但仍是理解计算机体系结构并行性的基石。现代架构虽更复杂,但其核心思想仍指导着处理器设计方向。数据流架构脉动阵列神经形态计算核心价值:Flynn分类法提供了分析并行计算的基本框架发展趋势:现代处理器多为混合架构,结合多种并行模式Flynn分类法虽然简单,但仍是理解计算机体系结构并行性的基石。现代架构虽更复杂,但其核心思想仍指导着处理器设计方向。

2025-07-04 13:55:50 795

原创 软考(软件设计师)流水线知识点

以下是计算机流水线技术的核心知识点梳理,结合关键概念、性能计算及冲突解决方案:各阶段任务:IF:从内存取指令 → PC更新ID:解析指令 → 读取寄存器EX:ALU计算/地址计算MEM:内存读写(Load/Store)WB:结果写回寄存器3. 流水线时空图假设4条指令(I1~I4)在5级流水线执行:关键观察:第5个周期起每个周期完成1条指令(理想情况)二、流水线性能量化k:流水线级数(Number of Stages)定义:流水线划分的阶段数量物理意义:表示指令被拆分的

2025-07-04 13:38:24 459

原创 软考(软件设计师)指令系统知识梳理

进程在。

2025-07-04 12:40:22 828

原创 软考(软件设计师)浮点数运算

理解阶符、阶码、数符、尾数这四者如何协同工作,是理解计算机如何存储和处理实数(浮点数)的基础。IEEE 754 标准通过这种精妙的设计(符号位、偏移指数、隐含前导1的尾数)在有限的位数内实现了对很大范围实数的有效表示。一个 IEEE 754 单精度浮点数的值。

2025-07-04 05:22:20 812

原创 软考(软件设计师)原码反码补码移码

关键总结移码本质:真值 + 固定偏移(Bias),将有符号数转为无符号数核心目的:让阶码的二进制大小直接反映实际指数大小偏移量公式Bias2k−1−1Bias2k−1−1(k=阶码位数)与补码关系:移码 ≈ 补码符号位取反后微调(但建议用公式计算)IEEE 754应用单精度:8位阶码,Bias=127双精度:11位阶码,Bias=1023最终效果:计算机在比阶时,直接对阶码的二进制串做无符号整数比较,一步得到大小关系,极大提升浮点数操作效率!特性。

2025-07-04 04:45:32 779

原创 软考(软件设计师)进制转换笔记

其他进制 (N进制) | | 十进制 (10进制) || | | || 按权展开求和 | <------> | 整数: 除基取余法 || (N->10) | | 小数: 乘基取整法 |^ ^| || (利用二进制作为桥梁) || || 二进制 (2进制) | <------> | 八进制 (8进制) || | 3位1组 | || 二进制 (2进制) | <------> | 十六进制 (16进制) |

2025-07-04 03:42:46 966

转载 NormFace精简版

NormFace

2022-04-27 15:09:09 377

原创 python 23种常用模式设计总结

python 23种常用模式设计总结

2022-03-28 10:14:48 1018

原创 Mosaicking to Distill Knowledge Distillation from Out-of-Domain Data

Mosaicking to Distill: Knowledge Distillation from Out-of-Domain Data在本文中,我们试图解决一项雄心勃勃的任务,即域外知识蒸馏(OOD-KD),它允许我们只使用可以以非常低的成本轻易获得的OOD数据来进行KD。诚然,由于不可知的领域差距,OOD-KD本质上是一项极具挑战性的任务。为此,我们介绍了一种方便而又令人惊讶的有效方法,被称为MosaicKD。MosaicKD背后的关键在于,来自不同领域的样本有共同的局部模式(local patt

2021-12-25 18:15:13 2727

原创 An Analysis of Temporal-Difference Learning with Function Approximation

An Analysis of Temporal-Difference Learning with Function ApproximationII. DEFINITION OF TEMPORAL-DIFFERENCE LEARNING在这一节中,我们精确地定义了时间差分学习的性质,并将其应用于infinite-horizon discounted马尔科夫链的成本–目标函数的近似。虽然该方法以及我们随后的结果适用于具有相当普遍的状态空间的马尔科夫链,但我们将注意力限制在状态空间是可数的情况下。这使我们能够

2021-12-20 19:50:40 489

原创 RandAugment

RandAugmenthttps://arxiv.org/pdf/1909.13719.pdf最近的工作表明,数据增强有可能显著提高深度学习模型的泛化能力。最近,自动增强策略导致了图像分类和物体检测的最先进结果。虽然这些策略是为了提高验证精度而优化的,但它们也导致了半监督学习的最先进结果,并提高了对图像常见损坏的鲁棒性。大规模采用这些方法的一个障碍是单独的搜索阶段,这增加了训练的复杂性并可能大大增加计算成本。此外,由于单独的搜索阶段,这些方法无法根据模型或数据集的大小来调整正则化强度。自动增强策略通常

2021-12-13 20:38:08 3088

原创 EfficientNetV2 Smaller Models and Faster Training

EfficientNetV2: Smaller Models and Faster Traininghttps://arxiv.org/pdf/2104.00298.pdf本文介绍了一种新的卷积网络族EfficientNetV2,它具有比以往的模型更快的训练速度和更好的参数效率。为了开发这些模型,我们结合使用training-aware神经结构搜索和缩放,共同优化训练速度和参数效率。该模型在搜索空间中加入了新的操作,如fusion - mbconv。我们的实验表明,effecentnetv2模型的训练速

2021-12-13 16:18:46 2496

原创 EfficientNet Rethinking Model Scaling for Convolutional Neural Networks

EfficientNet: Rethinking Model Scaling for Convolutional Neural Networkshttps://arxiv.org/pdf/1905.11946.pdf在本文中,我们系统地研究了模型的缩放,并发现仔细平衡网络深度、宽度和分辨率可以获得更好的性能。在此基础上,我们提出了一种新的缩放方法,该方法使用一个简单而高效的复合系数来统一缩放深度/宽度/分辨率的所有维度。我们证明了这种方法在扩展MobileNets和ResNet的有效性。为了更进一步,

2021-12-13 11:27:35 2563

原创 # Chapter 5

Chapter 5Gradient Temporal-Difference Learning with Linear Function Approximation本章提供了线性函数近似情况下梯度-TD算法的核心思想和理论结果。在这里,我们在Baird(1995;1999)的工作基础上,探讨了用于线性函数逼近的时差学习的真正随机梯度下降算法的发展。特别是,我们引入了三种新的TD算法,与线性函数逼近和off-policy训练兼容,其复杂度仅以函数逼近器的大小为线性扩展。第一种算法,GTD,估计TD(0)算

2021-12-13 00:05:04 1382

原创 Chapter 4

Chapter 4Off-Policy Formulation of Temporal-Difference LearningTD学习的关键特征之一是它能够从不完整的序列中学习而不需要等待结果。这个关键特征,使TD方法能够single state-state transitions中学习(最小的经验片段)。事实证明,我们可以利用这个独特的属性来做off-policy学习。在本章中,我们为时差学习提供了一个off-policy表述,该表述基于从根据agent的行为策略产生的数据中进行的子采样1,即从轨迹

2021-12-12 22:00:42 292

原创 Chapter 3

Chapter 3Objective Function for Temporal-Difference Learning一个目标函数是一个可修改参数θ的函数,我们通过更新θ来求其最小值。在(随机)梯度下降中,对θ的更新与目标函数相对于θ的负(样本)梯度成正比。在标准RL中,目标是找到满足Bellman方程的解。然而,在函数逼近的情况下,如何将Bellman方程与值函数逼近相结合尚不清楚。在本章中,我们寻求一个目标函数(针对政策评估的情况),其最小值提供了近似值函数的合理解。我们提出了一个Bellman

2021-12-12 00:45:59 585

原创 # Gradient Temporal-Difference Learning Algorithms

Gradient Temporal-Difference Learning AlgorithmsChapter 22.3 Temporal-difference learningTD学习是预测的一个关键思想,在强化学习中起着核心作用(Sutton, 1988; Sutton and Barto, 1998)。它使用动态编程开发的bootstrapping 思想以及蒙特卡洛思想。经典的TD方法,如TD(λ)、Sarsa和Q-learning是简单的、sample-based、online和increme

2021-12-11 23:52:28 704

反向传播aaaaaaaaaaaaaaa.rar

反向传播

2021-01-22

神经网络asdfasdfsafas.rar

神经网络asdfasdfsafas.rar

2021-01-19

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除