最强文本审核模型-Amazon Bedrock模型:DeepSeek vs Nova vs Claude

在互联网快速发展的背景下,用户生成内容(UGC)激增,社交媒体、电商和视频平台上涌现大量文字、图片、视频等信息。然而,其中可能包含不当或违法内容,影响平台形象和用户体验。因此,高效、准确的内容审核至关重要。

传统人工审核成本高、效率低,且易受主观因素影响,难以应对多模态、多语种的审核需求。生成式 AI 技术提供了新的解决方案,依托大语言模型和多模态模型,可自动、高效地识别违规内容,优化审核流程。

本文将探讨如何利用 Amazon Bedrock 提供的生成式 AI 模型进行文本审核,并从准确率、时延、成本等方面评估 DeepSeek、Nova、Claude 3.x 等模型的表现,帮助用户选择最优方案。

DeepSeek 模型访问及说明

DeepSeek 是中国 AI 初创公司,2024 年 12 月推出 DeepSeek-V3,随后于 2025 年 1 月发布 DeepSeek-R1、DeepSeek-R1-Zero(6710 亿参数)及 DeepSeek-R1-Distill(1.5-70 亿参数)等模型。这些模型均可公开获取,成本比同类产品低 90-95%,具备强大推理能力和高性价比。

您可使用海外区亚马逊云科技账号,在 Amazon Bedrock 或 Amazon SageMaker AI 部署 DeepSeek-R1 及其蒸馏模型。Bedrock 适用于快速 API 集成,SageMaker AI 则支持更深度的定制和训练。此外,AWS Trainium 与 Inferentia 可助力在 EC2 或 SageMaker AI 上高效部署 DeepSeek-R1-Distill 进行文本审核。

若使用亚马逊云科技中国区账号,可通过合作伙伴硅基流动,在 Marketplace 访问 DeepSeek 全系列模型,并选择 SageMaker AI 或 EC2 进行私有化部署,实现高效审核。

DeepSeek 系列模型在文本审核上的对比

此次数据对比了 DeepSeek 系列模型在文本审核中的表现,使用 Amazon Marketplace Siliconflow API 和 Amazon Bedrock DeepSeek-R1 API 进行测试。

准确率方面,DeepSeek-R1 最高,达 97.14%,DeepSeek Distilled Qwen 32B 为 92.86%,超过 DeepSeek Distilled Llama70B,仅次于 DeepSeek-R1。

响应速度,DeepSeek Distilled Qwen 32B 首字节延迟 0.29ms,比 DeepSeek-R1 快一倍。

成本对比,在 1 万次调用下,DeepSeek Distilled Qwen 32B 和 DeepSeek-V3 的价

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值