我们可以通过计算掩模和图像的 cv2.bitwise_and() 来应用掩模到图像上。要跟踪颜色,我们使用 cv2.inRange() 在HSV颜色空间中定义掩模,传递颜色数值的下限和上限。
要跟踪图像的一部分,我们可以使用 np.zeros() 定义一个掩模,并对待检查的输入图像区域为白色(255)的条目进行切片。按照以下给定的步骤生成图像掩模 –
- 第一步是导入必要的库。所需的Python库是 OpenCV 和 NumPy 。确保您已经安装了它们。
-
然后使用 cv2.imread() 方法读取输入图像。将图像BGR转换为HSV以跟踪输入图像中的颜色。要跟踪图像的一部分,请保持图像为BGR格式。
-
使用 cv2.inRange() 定义一个掩模以跟踪图像中的特定颜色。传递颜色在HSV格式中的下限和上限。如果要跟踪输入图像的矩形部分,请使用一个矩形图像(称为 mask ),并使用 cv2.zeros() 填充掩模的条目以跟踪原始图像中的区域。
-
使用 cv2.bitwise_and() 在 mask 和输入图像之间执行按位与操作。
-
现在显示掩模和掩膜图像。
我们将使用