随机森林算法及其实现(Random Forest)

随机森林是一种集成学习算法,由多棵决策树组成,通过集成思想进行分类。每棵树独立生成,采用随机抽样的训练样本和特征,降低过拟合风险。随机森林在准确性、处理高维数据和评估特征重要性等方面表现出色,广泛应用于各种场景。Python中可使用scikit-learn库实现随机森林。
摘要由CSDN通过智能技术生成

1 什么是随机森林?

作为新兴起的、高度灵活的一种机器学习算法,随机森林(Random Forest,简称RF)拥有广泛的应用前景,从市场营销到医疗保健保险,既可以用来做市场营销模拟的建模,统计客户来源,保留和流失,也可用来预测疾病的风险和病患者的易感性。最初,我是在参加校外竞赛时接触到随机森林算法的。最近几年的国内外大赛,包括2013年百度校园电影推荐系统大赛、2014年阿里巴巴天池大数据竞赛以及Kaggle数据科学竞赛,参赛者对随机森林的使用占有相当高的比例。此外,据我的个人了解来看,一大部分成功进入答辩的队伍也都选择了Random Forest 或者 GBDT 算法。所以可以看出,Random Forest在准确率方面还是相当有优势的。

那说了这么多,那随机森林到底是怎样的一种算法呢?

如果读者接触过决策树(Decision Tree)的话,那么会很容易理解什么是随机森林。随机森林就是通过集成学习的思想将多棵树集成的一种算法,它的基本单元是决策树,而它的本质属于机器学习的一大分支——集成学习(Ensemble Learning)方法。随机森林的名称中有两个关键词,一个是“随机”,一个就是“森林”。“森林”我们很好理解,一棵叫做树,那么成百上千棵就可以叫做森林了,这样的比喻还是很贴切的,其实这也是随机森林的主要思想--集成思想的体现。“随机”的含义我们会在下边部分讲到。

其实从直观角度来解释,每棵决策树都是一个分类器(假设现在针对的是分类问题),那么对于一个输入样本,N棵树会有N个分类结果。而随机森林集成了所有的分类投票结果,将投票次数最多的类别指定为最终的输出,这就是一种最简单的 Bagging 思想。

2 随机森林的特点

我们前边提到,随机森林是一种很灵活实用的方法,它有如下几个特点:

在当前所有算法中,具有极好的准确率/It is unexcelled in accuracy among current algorithms;

能够有效地运行在大数据集上/It runs efficiently on large data bases;

能够处理具有高维特征的输入样本,而且不需要降维/It can handle thousands of input variables without variable deletion;

能够评估各个特征在分类问题上的重要性/It gives estimates of what variables are important in the classification;

在生成过程中,能够获取到内部生成误差的一种无偏估计/It generates an internal unbiased estimate of the generalization error as the forest building progresses;

对于缺省值问题也能够获得很好得结果/It has an effective method for estimating missing data and maintains accuracy when a large proportion of the data are missing

... ...

实际上,随机森林的特点不只有这六点,它就相当于机器学习领域的Leatherman(多面手),你几乎可以把任何东西扔进去,它基本上都是可供使用的。在估计推断映射方面特别好用,以致都不需要像SVM那样做很多参数的调试。具体的随机森林介绍可以参见随机森林主页:Random Forest。

3 随机森林的相关基础知识

随机森林看起来是很好理解,但是要完全搞明白它的工作原理,需要很多机器学习方面相关的基础知识。在本文中,我们简单谈一下,而不逐一进行赘述,如果有同学不太了解相关的知识,可以参阅其他博友的一些相关博文或者文献。

1)信息、熵以及信息增益的概念

这三个基本概念是决策

随机森林算法是一种集成学习方法,通过组合多个决策树模型来进行预测和分类。它是基于决策树的一种扩展算法随机森林算法实现步骤如下: 1. 随机抽取训练数据集的子集,即通过有放回抽样的方式选取样本; 2. 随机选择特征集的子集,即从特征集中随机选择部分特征,这样可以增加决策树之间的差异性; 3. 根据上述的子数据集和子特征集建立决策树模型; 4. 重复步骤1-3,生成多个决策树模型; 5. 对于回归问题,将多个决策树的预测结果取平均值作为随机森林的最终预测结果;对于分类问题,采用投票的方式确定最终的类别。 随机森林算法的优势在于: 1. 可以处理大型数据集,并在相对较短的时间内完成预测; 2. 能够有效地处理高维数据,不需要进行特征选择; 3. 具有很好的鲁棒性,能够处理缺失值和异常值; 4. 能够评估特征对预测结果的重要程度。 值得注意的是,随机森林算法也有一些限制: 1. 对于包含大量噪声特征的数据集,随机森林模型可能会过拟合; 2. 由于采用了随机抽样和随机选择特征子集的方式,解释性较差,难以解释单个决策树的决策过程。 总而言之,随机森林算法通过构建多个决策树模型,并通过投票或者平均值的方式综合每个决策树的结果,来实现对数据的预测和分类。它具有高效、鲁棒性高等优点,并且不需要进行特征选择。然而,也需要注意过拟合和解释性的问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值