洗牌算法

#include <iostream>
using namespace std ;
#define N 6
#define M 300000
int main()
{
	int data[N] ;
	int temp ;
	int n = 0  ;
        int m = M ;
        //初始化数据,将1,2,3...N按顺序放入数字
	for(int i = 0 ; i < N ; i++)
			data[i] = i+1 ;
	while(m--)
	{

                //洗牌算法,从data[0]开始,随机数字,比如是data[x],则data[0]与data[x]进行交换,然后进行data[1]...data[N/2+1]		
		for(i = 0 ; i < N/2+1 ; i++)
		{
			int t =rand()%N ;
			temp = data[i] ;
			data[i] = data[t] ;
			data[t] = temp ;
		}
                //以下是测试30W个数据,看1,2,3...N没有改变顺序的为多少次
                int tage = 0 ;
		for(i = 0 ; i < N ; i++)
		{		
			if(data[i] != i+1)
				tage = 1 ;
		}
		if(tage == 0)
			n++ ;
	}
	cout << "未改变概率为:" << (float)n/300000 << endl ;
	return 0 ;
}
最后结论和概率论差不多,比如5个数据,每个组合出现的概率为1/(5*4*3*2) 而测试结果得到的概率也与之接近。

©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页