实现极大极小算法——Python算法

本文介绍了使用Python实现极大极小算法,该算法常用于博弈和决策树,通过迭代搜索找到最佳决策。文章提供完整Python代码,展示了如何通过递归分析节点并进行剪枝操作,以找到最优解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

实现极大极小算法——Python算法

极大极小算法(MinMax Algorithm)是人工智能领域中常用的一种搜索算法,常用于博弈和决策树等场景。本文将介绍如何使用 Python 实现极大极小算法,并附上完整的源代码。

首先,我们需要了解一下极大极小算法的基本思想。该算法通过迭代搜索对于某个局面进行分析,从而找到最佳的决策。在每一次迭代中,算法会选择“极大化”或者“极小化”当前节点的值,并向下递归地处理相邻的节点,直至达到递归深度或者遇到终止条件。最后算法会返回一个值作为最终的决策结果。

下面是 Python 代码实现:

import math

# 极大极小算法实现函数
def minimax(depth, nodeIndex, maximizingPlayer,
            values
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值