基于卷积神经网络嵌入注意力机制的深度学习模型实现风电功率预测

727 篇文章 ¥59.90 ¥99.00
本文介绍了一种基于卷积神经网络和注意力机制的深度学习模型——CNN-BiLSTM-Attention,用于风电功率预测。通过结合CNN的空间特征提取、BiLSTM的时间序列特征提取和Attention机制的权重计算,提高了预测准确性。文章详细阐述了模型结构、数据准备、训练过程和测试结果,并提供了MATLAB源代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基于卷积神经网络嵌入注意力机制的深度学习模型实现风电功率预测

随着能源的快速消耗,清洁能源的需求也在不断增加。在所有可再生能源中,风能是最为成熟和广泛应用的一种,因此对风能的利用和开发具有重要的意义。为了更好地使用风能,在风电站的建设中,对电力的预测是一项至关重要的任务。电力预测可以帮助管理人员更好地分配电能,提高风电站的效益。但由于风能受到天气等多种因素的影响,风电功率预测难度较大。因此,研究一种准确性高、预测效果稳定的风电功率预测方法具有重要的实际意义。

本文提出一种新的基于卷积神经网络(Convolutional Neural Network, CNN)嵌入注意力机制的深度学习模型,称之为CNN-BiLSTM-Attention模型,用于风电功率的多输入单输出预测。本文将详细介绍该模型的结构和实现过程,并给出相应的MATLAB源代码。

一、数据准备
本文使用2013年英国牛津郡Cowley风电场一个月的功率数据集作为训练数据,数据间隔时间为10分钟。本次预测任务是预测下一个时间点的功率值,因此,将前24小时的功率数据和12个气象站的气象特征数据作为输入,预测下一个时间点的功率值。

二、模型结构
CNN-BiLSTM-Attention模型结构主要由三个部分组成:卷积神经网络(CNN)、双向长短时记忆循环神经网络(Bidirectional Long Short-Term Memory,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值