基于Hu不变矩图像检索的Matlab实现

727 篇文章 ¥59.90 ¥99.00
本文探讨了图像检索中的Hu不变矩方法,它具有旋转、平移、尺度和亮度不变性。通过计算图像的中心距和不变矩,可以作为特征向量用于图像检索。提供了一个Matlab实现的代码示例,该示例展示了如何计算图像的Hu不变矩并进行相似度比较,适用于二值图像。尽管Hu不变矩在处理几何变换上有优势,但在处理包含纹理和颜色信息的图像时,可能需要结合其他特征描述符。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基于Hu不变矩图像检索的Matlab实现

图像检索是计算机视觉的一个重要研究领域。在大规模图像检索中,使用特征向量作为图像的描述符是一种常见的方法。然而,由于多个因素的影响,特征向量不同的维度和权重会导致检索结果的容易受到一些非关键因素的影响。此外,对于部分情况下,这些特征描述符难以适应图像的旋转、尺度、亮度等变化。针对这种情况,Hu不变矩被提出并应用于图像检索。

  1. 原理介绍
    假设我们有一个N x N的二值图像I,其中每个像素的灰度值为0或1。为了计算Hu不变矩,我们首先需要计算若干几何变换后的中心距:

  2. 零阶中心距:m00 = ∑∑ I(x,y)

  3. 一阶中心距:m10 = ∑∑ xI(x,y), m01 = ∑∑ yI(x,y)

  4. 二阶中心距:m20 = ∑∑ (x-m10)^2I(x,y), m11 = ∑∑(x-m10)(y-m01)I(x,y), m02 = ∑∑(y-m01)^2I(x,y)

其中,∑∑表示对整个图像进行求和。

我们可以利用这些中心距计算若干不变矩:

  1. 第一不变矩:m00^(-1/2) * m00
  2. 第二不变矩:m00^(-1) * m20
  3. 第三不变矩࿱
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值