d2l
文章平均质量分 81
Yuuu_le
这个作者很懒,什么都没留下…
展开
-
转置卷积运算及其与卷积关系解析
转置卷积1.转置卷积转置卷积是一种卷积它将输入和核进行了重新排列同卷积一般是做下采样不同,它通常是用作上采样如果卷积将输入从(h, w)变成了(h1,w1)(h_1,w_1)(h1,w1),同样超参数下它将从(h1,w1)(h_1,w_1)(h1,w1)变成(h, w).2.重新排列输入和核当填充为0步幅为1时将输入填充k−1k-1k−1(上下、左右,k 是核窗口)将核矩阵上下、左右翻转然后做正常卷积(填充0、步幅1)当填充为p步幅为1时将输入填原创 2022-03-20 15:48:21 · 537 阅读 · 0 评论 -
MLP概述
多层感知机概述1. 线性过渡我们在之前的内容中采用仿射变换,将输入对应于输出。但仿射变换中的线性是一个很强的假设。1.1 线性模型将遇到的问题线性模型默认一个特征对输出结果的影响是单调的,而这一假设于很多实际问题相矛盾。例如还款的可能性与收入的关系,收入从0增加到5万还款的可能性要远大于收入从100万增加到105万。(为了解决这一问题我们需要对数据进行处理,例如还款金额的对数作为特征。)再比如人体死亡可能性与人体温度的关系,人体温度高于37℃时,温度越高死亡可能性越大,而低于37℃时,温度越低死亡可原创 2021-10-22 22:16:49 · 3115 阅读 · 0 评论 -
softmax依赖pytorch框架的简洁实现
SOFTMAX简洁实现softmax回归的简洁实现1. 数据集2. 初始化模型参数3. 重新审视softmax实现4. 定义优化算法5. 训练softmax回归的简洁实现1. 数据集我们仍旧使用Fashion-MNIST数据集,并且使用上一节中定义好的函数进行数据集的加载。batch_size = 256train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)2. 初始化模型参数由于softmax回归的输出层是一个全连接层原创 2021-10-07 20:29:32 · 342 阅读 · 0 评论 -
Softmax(分类模型基础)——最全重难点解释及代码
文章目录softmax 从零开始实现1. 图像分类数据集1.1 数据集加载与处理1.2 读取小批量1.3 整合所有组件2. 初始化模型参数3. 定义softmax操作3.1 sum()方法基础3.2 softmax操作4 定义模型5. 定义损失函数6. 分类准确率7. 训练7.2 定义优化器写在前面:本节内容主要参考自《动手学深度学习》,本文对其中内容进行了补充,并将可能疑问的地方进行了标注和详细的解释。完整代码实现参考【】,简洁实现参考【】。如有疑问和问题欢迎给位交流和指出。softmax 从零开始实原创 2021-10-03 21:04:47 · 3301 阅读 · 2 评论 -
d2l_线性回归完整python程序
从零实现import torchimport randomdef synthetic_data(w, b, num_examples): """生成 y=Xw + b + 噪声""" X = torch.normal(0, 1, (num_examples, len(w))) # 正态分布(均值为0,标准差为1) y = torch.matmul(X, w) + b # 矩阵相乘 y += torch.normal(0, 0.01, y.shape) # 加入噪声项原创 2021-09-27 21:50:47 · 1292 阅读 · 0 评论 -
d2l_线性回归实现详解及代码
文章目录1. 线性回归从零开始实现1.1 生成数据集1.2 读取数据集1.3 初始化模型参数1.4 定义模型1.5定义损失函数1.6 定义优化算法1.7 训练2. 线性回归简洁实现2.1 生成数据集2.2 读取数据集2.3 定义模型2.4 初始化模型参数2.5 定义损失函数2.6 定义优化算法2.7 训练1. 线性回归从零开始实现1.1 生成数据集我们根据带有噪声的线性模型构造一个人造数据集,我们将使用有限的数据集来恢复这个模型的参数。在下面代码中,我们生成一个包含1000个样本的数据集,每个样本包含原创 2021-09-27 21:48:43 · 2463 阅读 · 2 评论 -
动手学深度学习专题笔记--线性回归概述
线性回归概述1. 回归(regression)回归是指一类为一个或多个自变量与因变量之间关系建模的方法,通常用来表示输入和输出之间的关系。在机器学习中大多数任务都与预测有关,当我们想预测一个数值时就会涉及到回归问题。2. 线性回归(linear regression)2.1 假设假设自变量x和因变量y之间的关系是线性的。任何噪声都比较正常,如噪声遵循正太分布。我们以一个实际例子对线性回归进行解释,我们希望根据房屋的面积(平方英尺)和房龄(年)来估算房屋价格(美元)2.2 线性模型线原创 2021-09-20 00:32:50 · 196 阅读 · 0 评论