3D车道线检测-论文
文章平均质量分 93
Yuuu_le
这个作者很懒,什么都没留下…
展开
-
Gen-LaneNet论文精读总结
P.S. 3D-LaneNet中其anchor的表示是在road坐标系下的,其先通过外参转换到road坐标系,再直接将3D坐标投影到x,y平面(即直接去掉z坐标)得到top-view中车道线的坐标点,这种做法在上下坡时,其top-view中的点与通过透视变换得到的透视图中车道线是不相符的,如图b中的蓝线就是在上坡时3D-laneNet得到的投影视图中的车道线,与实际白线是不一致的。,所以在第二阶段模型(本文命名为3D-GeoNet)中,直接使用分割后的输出进行坐标点的预测。处与最近的anchor进行匹配。原创 2023-03-27 11:11:59 · 739 阅读 · 2 评论 -
3D-LaneNet论文精读总结
3D-LaneNet是ICCV 2019的一篇文章,其主要构造了一个**双通路(dual-pathway)的网络结构,其中一个通路通过相机原始图像实现相机外参(高度和pitch)的学习,另一个通路在俯视图下实现3D车道线的检测,**第二条通路通过第一条通路学习到的外参使用类似。处重合),所以每个anchor输出三种类型的描述符(c1,c2,d)前两者表示该anchor拟合的不同的中心线(centerline),d表示该anchor预测的边界线(dlimiter)。的方法实现两条通路之间特征的融合。原创 2023-03-27 09:53:10 · 993 阅读 · 0 评论