条件随机场介绍(0)—— An Introduction to Conditional Random Fields

本文介绍条件随机场(CRF),一种广泛应用于自然语言处理、计算机视觉等领域的结构化预测概率模型。CRF结合了图模型的简洁建模能力和分类方法的特征预测能力,特别适合处理大量相互依赖的变量预测问题。文章深入讲解了CRF的推断和参数估计方法,以及在大规模应用中可能遇到的实践挑战。
摘要由CSDN通过智能技术生成

条件随机场介绍


原文:An Introduction to Conditional Random Fields

作者:

Charles Sutton (School of Informatics, University of Edinburgh, Edinburgh, EH8 9AB, UK)
Andrew McCallum (Department of Computer Science, University of Massachusetts, Amherst, MA, 01003, USA)

翻译整理:Juworchey



摘要

许多数据分析任务需要对大量相互依赖或者依赖于其他可观测变量的变量进行预测。结构化预测方法本质上是分类方法与图模型的结合。这类方法将图模型对多元数据简洁的建模能力,与分类方法能够利用大量特征进行预测的能力相结合。本文介绍条件随机场(conditional random fields, CRF),这是一种流行的用于结构化预测的概率方法。条件随机场被广泛的应用于各领域,包括自然语言处理,计算机视觉,生物信息学等。本文介绍了条件随机场的推断和参数估计方法,以及实现大规模条件随机场可能会涉及到的实践问题。此外,本文希望对各领域的从业人员有所帮助,因此对概率图模型的知识不做任何前提假设。

文中序号为 (x.x)的公式为原文公式。形如(x)的序号为博客自动添加的序号,可以忽略,若哪位知道如何去除烦请留言,多谢!。

转载于:https://www.cnblogs.com/Juworchey/p/7954348.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值