BERT参数量计算

参数详情说明参数量
name = bert/embeddings/word_embeddings:0, shape = (30522, 768)单词表每个单词向量长度是768,一共30522个单词23440896
name = bert/embeddings/token_type_embeddings:0, shape = (2, 768)对于输入的任务是两个句子的,需要两个768维度的向量表示是第一个句子还是第二个句子1536
name = bert/embeddings/position_embeddings:0, shape = (512, 768)每个位置的embedding向量的表示,每一个位置向量是768维393216
name = bert/embeddings/LayerNorm/beta:0, shape = (768,)LayerNorm beta参数,因为单词向量表示是768维,所以是768个768
name = bert/embeddings/LayerNorm/gamma:0, shape = (768,)LayerNorm gamma参数,因为单词向量表示是768维,所以是768个768
name = bert/encoder/layer_0/attention/self/query/kernel:0, shape = (768, 768)这个是输入矩阵形状对应的query,正常是(768,12*64)所以最后变成了(768, 768)589824
name = bert/encoder/layer_0/attention/self/query/bias:0, shape = (768,)因为上面后者是12*64=768,所以最后是768维度的向量768
name = bert/encoder/layer_0/attention/self/key/kernel:0, shape = (768, 768)这个是输出矩阵形状对应的key,因为是self-attention,所以输出与输入的形状是相同的,所以也是(768, 12*64)589824
name = bert/encoder/layer_0/attention/self/key/bias:0, shape = (768,)因为上面后者是12*64=768,所以最后是768维度的向量768
name = bert/encoder/layer_0/attention/self/value/kernel:0, shape = (768, 768)这个是输出矩阵形状对应的value,因为是self-attention,所以输出与输入的形状是相同的,所以也是(768, 12*64)589824
name = bert/encoder/layer_0/attention/self/value/bias:0, shape = (768,)因为上面后者是12*64=768,所以最后是768维度的向量589824
name = bert/encoder/layer_0/attention/output/dense/kernel:0, shape = (768, 768)全连接第一层 768*768,全连接之后进行的残差连接589824
name = bert/encoder/layer_0/attention/output/dense/bias:0, shape = (768,)全连接对应的bias768
name = bert/encoder/layer_0/attention/output/LayerNorm/beta:0, shape = (768,)LayerNorm beta参数,因为单词向量表示是768维,所以是768个768
name = bert/encoder/layer_0/attention/output/LayerNorm/gamma:0, shape = (768,)LayerNorm gamma参数,因为单词向量表示是768维,所以是768个768
name = bert/encoder/layer_0/intermediate/dense/kernel:0, shape = (768, 3072)全连接第二层是768*30722359296
name = bert/encoder/layer_0/intermediate/dense/bias:0, shape = (3072,)全连接对应的bias3072
name = bert/encoder/layer_0/output/dense/kernel:0, shape = (3072, 768)全连接第三层,将神经元的个数降低到768,好进行下一层的multi-head attention2359296
name = bert/encoder/layer_0/output/dense/bias:0, shape = (768,)全连接对应的bias768
name = bert/encoder/layer_0/output/LayerNorm/beta:0, shape = (768,)LayerNorm beta参数,因为单词向量表示是768维,所以是768个768
name = bert/encoder/layer_0/output/LayerNorm/gamma:0, shape = (768,)LayerNorm gamma参数,因为单词向量表示是768维,所以是768个768
name = bert/encoder/layer_1/attention/self/query/kernel:0, shape = (768, 768)这个是输入矩阵形状对应的query,正常是(768,12*64)所以最后变成了(768, 768)589824
name = bert/encoder/layer_1/attention/self/query/bias:0, shape = (768,)因为上面后者是12*64=768,所以最后是768维度的向量768
name = bert/encoder/layer_1/attention/self/key/kernel:0, shape = (768, 768)这个是输出矩阵形状对应的key,因为是self-attention,所以输出与输入的形状是相同的,所以也是(768, 12*64)589824
name = bert/encoder/layer_1/attention/self/key/bias:0, shape = (768,)因为上面后者是12*64=768,所以最后是768维度的向量768
name = bert/encoder/layer_1/attention/self/value/kernel:0, shape = (768, 768)这个是输出矩阵形状对应的value,因为是self-attention,所以输出与输入的形状是相同的,所以也是(768, 12*64)589824
name = bert/encoder/layer_1/attention/self/value/bias:0, shape = (768,)因为上面后者是12*64=768,所以最后是768维度的向量589824
name = bert/encoder/layer_1/attention/output/dense/kernel:0, shape = (768, 768)全连接第一层 768*768589824
name = bert/encoder/layer_1/attention/output/dense/bias:0, shape = (768,)全连接对应的bias768
name = bert/encoder/layer_1/attention/output/LayerNorm/beta:0, shape = (768,)LayerNorm beta参数,因为单词向量表示是768维,所以是768个768
name = bert/encoder/layer_1/attention/output/LayerNorm/gamma:0, shape = (768,)LayerNorm gamma参数,因为单词向量表示是768维,所以是768个768
name = bert/encoder/layer_1/intermediate/dense/kernel:0, shape = (768, 3072)全连接第二层是768*30722359296
name = bert/encoder/layer_1/intermediate/dense/bias:0, shape = (3072,)全连接对应的bias3072
name = bert/encoder/layer_1/output/dense/kernel:0, shape = (3072, 768)全连接第三层,将神经元的个数降低到768,好进行下一层的multi-head attention2359296
name = bert/encoder/layer_1/output/dense/bias:0, shape = (768,)全连接对应的bias768
name = bert/encoder/layer_1/output/LayerNorm/beta:0, shape = (768,)LayerNorm beta参数,因为单词向量表示是768维,所以是768个768
name = bert/encoder/layer_1/output/LayerNorm/gamma:0, shape = (768,)LayerNorm gamma参数,因为单词向量表示是768维,所以是768个768
name = bert/encoder/layer_2/attention/self/query/kernel:0, shape = (768, 768)这个是输入矩阵形状对应的query,正常是(768,12*64)所以最后变成了(768, 768)589824
name = bert/encoder/layer_2/attention/self/query/bias:0, shape = (768,)因为上面后者是12*64=768,所以最后是768维度的向量768
name = bert/encoder/layer_2/attention/self/key/kernel:0, shape = (768, 768)这个是输出矩阵形状对应的key,因为是self-attention,所以输出与输入的形状是相同的,所以也是(768, 12*64)589824
name = bert/encoder/layer_2/attention/self/key/bias:0, shape = (768,)因为上面后者是12*64=768,所以最后是768维度的向量768
name = bert/encoder/layer_2/attention/self/value/kernel:0, shape = (768, 768)这个是输出矩阵形状对应的value,因为是self-attention,所以输出与输入的形状是相同的,所以也是(768, 12*64)589824
name = bert/encoder/layer_2/attention/self/value/bias:0, shape = (768,)因为上面后者是12*64=768,所以最后是768维度的向量589824
name = bert/encoder/layer_2/attention/output/dense/kernel:0, shape = (768, 768)全连接第一层 768*768589824
name = bert/encoder/layer_2/attention/output/dense/bias:0, shape = (768,)全连接对应的bias768
name = bert/encoder/layer_2/attention/output/LayerNorm/beta:0, shape = (768,)LayerNorm beta参数,因为单词向量表示是768维,所以是768个768
name = bert/encoder/layer_2/attention/output/LayerNorm/gamma:0, shape = (768,)LayerNorm gamma参数,因为单词向量表示是768维,所以是768个768
name = bert/encoder/layer_2/intermediate/dense/kernel:0, shape = (768, 3072)全连接第二层是768*30722359296
name = bert/encoder/layer_2/intermediate/dense/bias:0, shape = (3072,)全连接对应的bias3072
name = bert/encoder/layer_2/output/dense/kernel:0, shape = (3072, 768)全连接第三层,将神经元的个数降低到768,好进行下一层的multi-head attention2359296
name = bert/encoder/layer_2/output/dense/bias:0, shape = (768,)全连接对应的bias768
name = bert/encoder/layer_2/output/LayerNorm/beta:0, shape = (768,)LayerNorm beta参数,因为单词向量表示是768维,所以是768个768
name = bert/encoder/layer_2/output/LayerNorm/gamma:0, shape = (768,)LayerNorm gamma参数,因为单词向量表示是768维,所以是768个768
name = bert/encoder/layer_3/attention/self/query/kernel:0, shape = (768, 768)这个是输入矩阵形状对应的query,正常是(768,12*64)所以最后变成了(768, 768)589824
name = bert/encoder/layer_3/attention/self/query/bias:0, shape = (768,)因为上面后者是12*64=768,所以最后是768维度的向量768
name = bert/encoder/layer_3/attention/self/key/kernel:0, shape = (768, 768)这个是输出矩阵形状对应的key,因为是self-attention,所以输出与输入的形状是相同的,所以也是(768, 12*64)589824
name = bert/encoder/layer_3/attention/self/key/bias:0, shape = (768,)因为上面后者是12*64=768,所以最后是768维度的向量768
name = bert/encoder/layer_3/attention/self/value/kernel:0, shape = (768, 768)这个是输出矩阵形状对应的value,因为是self-attention,所以输出与输入的形状是相同的,所以也是(768, 12*64)589824
name = bert/encoder/layer_3/attention/self/value/bias:0, shape = (768,)因为上面后者是12*64=768,所以最后是768维度的向量589824
name = bert/encoder/layer_3/attention/output/dense/kernel:0, shape = (768, 768)全连接第一层 768*768589824
name = bert/encoder/layer_3/attention/output/dense/bias:0, shape = (768,)全连接对应的bias768
name = bert/encoder/layer_3/attention/output/LayerNorm/beta:0, shape = (768,)LayerNorm beta参数,因为单词向量表示是768维,所以是768个768
name = bert/encoder/layer_3/attention/output/LayerNorm/gamma:0, shape = (768,)LayerNorm gamma参数,因为单词向量表示是768维,所以是768个768
name = bert/encoder/layer_3/intermediate/dense/kernel:0, shape = (768, 3072)全连接第二层是768*30722359296
name = bert/encoder/layer_3/intermediate/dense/bias:0, shape = (3072,)全连接对应的bias3072
name = bert/encoder/layer_3/output/dense/kernel:0, shape = (3072, 768)全连接第三层,将神经元的个数降低到768,好进行下一层的multi-head attention2359296
name = bert/encoder/layer_3/output/dense/bias:0, shape = (768,)全连接对应的bias768
name = bert/encoder/layer_3/output/LayerNorm/beta:0, shape = (768,)LayerNorm beta参数,因为单词向量表示是768维,所以是768个768
name = bert/encoder/layer_3/output/LayerNorm/gamma:0, shape = (768,)LayerNorm gamma参数,因为单词向量表示是768维,所以是768个768
name = bert/encoder/layer_4/attention/self/query/kernel:0, shape = (768, 768)这个是输入矩阵形状对应的query,正常是(768,12*64)所以最后变成了(768, 768)589824
name = bert/encoder/layer_4/attention/self/query/bias:0, shape = (768,)因为上面后者是12*64=768,所以最后是768维度的向量768
name = bert/encoder/layer_4/attention/self/key/kernel:0, shape = (768, 768)这个是输出矩阵形状对应的key,因为是self-attention,所以输出与输入的形状是相同的,所以也是(768, 12*64)589824
name = bert/encoder/layer_4/attention/self/key/bias:0, shape = (768,)因为上面后者是12*64=768,所以最后是768维度的向量768
name = bert/encoder/layer_4/attention/self/value/kernel:0, shape = (768, 768)这个是输出矩阵形状对应的value,因为是self-attention,所以输出与输入的形状是相同的,所以也是(768, 12*64)589824
name = bert/encoder/layer_4/attention/self/value/bias:0, shape = (768,)因为上面后者是12*64=768,所以最后是768维度的向量589824
name = bert/encoder/layer_4/attention/output/dense/kernel:0, shape = (768, 768)全连接第一层 768*768589824
name = bert/encoder/layer_4/attention/output/dense/bias:0, shape = (768,)全连接对应的bias768
name = bert/encoder/layer_4/attention/output/LayerNorm/beta:0, shape = (768,)LayerNorm beta参数,因为单词向量表示是768维,所以是768个768
name = bert/encoder/layer_4/attention/output/LayerNorm/gamma:0, shape = (768,)LayerNorm gamma参数,因为单词向量表示是768维,所以是768个768
name = bert/encoder/layer_4/intermediate/dense/kernel:0, shape = (768, 3072)全连接第二层是768*30722359296
name = bert/encoder/layer_4/intermediate/dense/bias:0, shape = (3072,)全连接对应的bias3072
name = bert/encoder/layer_4/output/dense/kernel:0, shape = (3072, 768)全连接第三层,将神经元的个数降低到768,好进行下一层的multi-head attention2359296
name = bert/encoder/layer_4/output/dense/bias:0, shape = (768,)全连接对应的bias768
name = bert/encoder/layer_4/output/LayerNorm/beta:0, shape = (768,)LayerNorm beta参数,因为单词向量表示是768维,所以是768个768
name = bert/encoder/layer_4/output/LayerNorm/gamma:0, shape = (768,)LayerNorm gamma参数,因为单词向量表示是768维,所以是768个768
name = bert/encoder/layer_5/attention/self/query/kernel:0, shape = (768, 768)这个是输入矩阵形状对应的query,正常是(768,12*64)所以最后变成了(768, 768)589824
name = bert/encoder/layer_5/attention/self/query/bias:0, shape = (768,)因为上面后者是12*64=768,所以最后是768维度的向量768
name = bert/encoder/layer_5/attention/self/key/kernel:0, shape = (768, 768)这个是输出矩阵形状对应的key,因为是self-attention,所以输出与输入的形状是相同的,所以也是(768, 12*64)589824
name = bert/encoder/layer_5/attention/self/key/bias:0, shape = (768,)因为上面后者是12*64=768,所以最后是768维度的向量768
name = bert/encoder/layer_5/attention/self/value/kernel:0, shape = (768, 768)这个是输出矩阵形状对应的value,因为是self-attention,所以输出与输入的形状是相同的,所以也是(768, 12*64)589824
name = bert/encoder/layer_5/attention/self/value/bias:0, shape = (768,)因为上面后者是12*64=768,所以最后是768维度的向量589824
name = bert/encoder/layer_5/attention/output/dense/kernel:0, shape = (768, 768)全连接第一层 768*768589824
name = bert/encoder/layer_5/attention/output/dense/bias:0, shape = (768,)全连接对应的bias768
name = bert/encoder/layer_5/attention/output/LayerNorm/beta:0, shape = (768,)LayerNorm beta参数,因为单词向量表示是768维,所以是768个768
name = bert/encoder/layer_5/attention/output/LayerNorm/gamma:0, shape = (768,)LayerNorm gamma参数,因为单词向量表示是768维,所以是768个768
name = bert/encoder/layer_5/intermediate/dense/kernel:0, shape = (768, 3072)全连接第二层是768*30722359296
name = bert/encoder/layer_5/intermediate/dense/bias:0, shape = (3072,)全连接对应的bias3072
name = bert/encoder/layer_5/output/dense/kernel:0, shape = (3072, 768)全连接第三层,将神经元的个数降低到768,好进行下一层的multi-head attention2359296
name = bert/encoder/layer_5/output/dense/bias:0, shape = (768,)全连接对应的bias768
name = bert/encoder/layer_5/output/LayerNorm/beta:0, shape = (768,)LayerNorm beta参数,因为单词向量表示是768维,所以是768个768
name = bert/encoder/layer_5/output/LayerNorm/gamma:0, shape = (768,)LayerNorm gamma参数,因为单词向量表示是768维,所以是768个768
name = bert/encoder/layer_6/attention/self/query/kernel:0, shape = (768, 768)这个是输入矩阵形状对应的query,正常是(768,12*64)所以最后变成了(768, 768)589824
name = bert/encoder/layer_6/attention/self/query/bias:0, shape = (768,)因为上面后者是12*64=768,所以最后是768维度的向量768
name = bert/encoder/layer_6/attention/self/key/kernel:0, shape = (768, 768)这个是输出矩阵形状对应的key,因为是self-attention,所以输出与输入的形状是相同的,所以也是(768, 12*64)589824
name = bert/encoder/layer_6/attention/self/key/bias:0, shape = (768,)因为上面后者是12*64=768,所以最后是768维度的向量768
name = bert/encoder/layer_6/attention/self/value/kernel:0, shape = (768, 768)这个是输出矩阵形状对应的value,因为是self-attention,所以输出与输入的形状是相同的,所以也是(768, 12*64)589824
name = bert/encoder/layer_6/attention/self/value/bias:0, shape = (768,)因为上面后者是12*64=768,所以最后是768维度的向量589824
name = bert/encoder/layer_6/attention/output/dense/kernel:0, shape = (768, 768)全连接第一层 768*768589824
name = bert/encoder/layer_6/attention/output/dense/bias:0, shape = (768,)全连接对应的bias768
name = bert/encoder/layer_6/attention/output/LayerNorm/beta:0, shape = (768,)LayerNorm beta参数,因为单词向量表示是768维,所以是768个768
name = bert/encoder/layer_6/attention/output/LayerNorm/gamma:0, shape = (768,)LayerNorm gamma参数,因为单词向量表示是768维,所以是768个768
name = bert/encoder/layer_6/intermediate/dense/kernel:0, shape = (768, 3072)全连接第二层是768*30722359296
name = bert/encoder/layer_6/intermediate/dense/bias:0, shape = (3072,)全连接对应的bias3072
name = bert/encoder/layer_6/output/dense/kernel:0, shape = (3072, 768)全连接第三层,将神经元的个数降低到768,好进行下一层的multi-head attention2359296
name = bert/encoder/layer_6/output/dense/bias:0, shape = (768,)全连接对应的bias768
name = bert/encoder/layer_6/output/LayerNorm/beta:0, shape = (768,)LayerNorm beta参数,因为单词向量表示是768维,所以是768个768
name = bert/encoder/layer_6/output/LayerNorm/gamma:0, shape = (768,)LayerNorm gamma参数,因为单词向量表示是768维,所以是768个768
name = bert/encoder/layer_7/attention/self/query/kernel:0, shape = (768, 768)这个是输入矩阵形状对应的query,正常是(768,12*64)所以最后变成了(768, 768)589824
name = bert/encoder/layer_7/attention/self/query/bias:0, shape = (768,)因为上面后者是12*64=768,所以最后是768维度的向量768
name = bert/encoder/layer_7/attention/self/key/kernel:0, shape = (768, 768)这个是输出矩阵形状对应的key,因为是self-attention,所以输出与输入的形状是相同的,所以也是(768, 12*64)589824
name = bert/encoder/layer_7/attention/self/key/bias:0, shape = (768,)因为上面后者是12*64=768,所以最后是768维度的向量768
name = bert/encoder/layer_7/attention/self/value/kernel:0, shape = (768, 768)这个是输出矩阵形状对应的value,因为是self-attention,所以输出与输入的形状是相同的,所以也是(768, 12*64)589824
name = bert/encoder/layer_7/attention/self/value/bias:0, shape = (768,)因为上面后者是12*64=768,所以最后是768维度的向量589824
name = bert/encoder/layer_7/attention/output/dense/kernel:0, shape = (768, 768)全连接第一层 768*768589824
name = bert/encoder/layer_7/attention/output/dense/bias:0, shape = (768,)全连接对应的bias768
name = bert/encoder/layer_7/attention/output/LayerNorm/beta:0, shape = (768,)LayerNorm beta参数,因为单词向量表示是768维,所以是768个768
name = bert/encoder/layer_7/attention/output/LayerNorm/gamma:0, shape = (768,)LayerNorm gamma参数,因为单词向量表示是768维,所以是768个768
name = bert/encoder/layer_7/intermediate/dense/kernel:0, shape = (768, 3072)全连接第二层是768*30722359296
name = bert/encoder/layer_7/intermediate/dense/bias:0, shape = (3072,)全连接对应的bias3072
name = bert/encoder/layer_7/output/dense/kernel:0, shape = (3072, 768)全连接第三层,将神经元的个数降低到768,好进行下一层的multi-head attention2359296
name = bert/encoder/layer_7/output/dense/bias:0, shape = (768,)全连接对应的bias768
name = bert/encoder/layer_7/output/LayerNorm/beta:0, shape = (768,)LayerNorm beta参数,因为单词向量表示是768维,所以是768个768
name = bert/encoder/layer_7/output/LayerNorm/gamma:0, shape = (768,)LayerNorm gamma参数,因为单词向量表示是768维,所以是768个768
name = bert/encoder/layer_8/attention/self/query/kernel:0, shape = (768, 768)这个是输入矩阵形状对应的query,正常是(768,12*64)所以最后变成了(768, 768)589824
name = bert/encoder/layer_8/attention/self/query/bias:0, shape = (768,)因为上面后者是12*64=768,所以最后是768维度的向量768
name = bert/encoder/layer_8/attention/self/key/kernel:0, shape = (768, 768)这个是输出矩阵形状对应的key,因为是self-attention,所以输出与输入的形状是相同的,所以也是(768, 12*64)589824
name = bert/encoder/layer_8/attention/self/key/bias:0, shape = (768,)因为上面后者是12*64=768,所以最后是768维度的向量768
name = bert/encoder/layer_8/attention/self/value/kernel:0, shape = (768, 768)这个是输出矩阵形状对应的value,因为是self-attention,所以输出与输入的形状是相同的,所以也是(768, 12*64)589824
name = bert/encoder/layer_8/attention/self/value/bias:0, shape = (768,)因为上面后者是12*64=768,所以最后是768维度的向量589824
name = bert/encoder/layer_8/attention/output/dense/kernel:0, shape = (768, 768)全连接第一层 768*768589824
name = bert/encoder/layer_8/attention/output/dense/bias:0, shape = (768,)全连接对应的bias768
name = bert/encoder/layer_8/attention/output/LayerNorm/beta:0, shape = (768,)LayerNorm beta参数,因为单词向量表示是768维,所以是768个768
name = bert/encoder/layer_8/attention/output/LayerNorm/gamma:0, shape = (768,)LayerNorm gamma参数,因为单词向量表示是768维,所以是768个768
name = bert/encoder/layer_8/intermediate/dense/kernel:0, shape = (768, 3072)全连接第二层是768*30722359296
name = bert/encoder/layer_8/intermediate/dense/bias:0, shape = (3072,)全连接对应的bias3072
name = bert/encoder/layer_8/output/dense/kernel:0, shape = (3072, 768)全连接第三层,将神经元的个数降低到768,好进行下一层的multi-head attention2359296
name = bert/encoder/layer_8/output/dense/bias:0, shape = (768,)全连接对应的bias768
name = bert/encoder/layer_8/output/LayerNorm/beta:0, shape = (768,)LayerNorm beta参数,因为单词向量表示是768维,所以是768个768
name = bert/encoder/layer_8/output/LayerNorm/gamma:0, shape = (768,)LayerNorm gamma参数,因为单词向量表示是768维,所以是768个768
name = bert/encoder/layer_9/attention/self/query/kernel:0, shape = (768, 768)这个是输入矩阵形状对应的query,正常是(768,12*64)所以最后变成了(768, 768)589824
name = bert/encoder/layer_9/attention/self/query/bias:0, shape = (768,)因为上面后者是12*64=768,所以最后是768维度的向量768
name = bert/encoder/layer_9/attention/self/key/kernel:0, shape = (768, 768)这个是输出矩阵形状对应的key,因为是self-attention,所以输出与输入的形状是相同的,所以也是(768, 12*64)589824
name = bert/encoder/layer_9/attention/self/key/bias:0, shape = (768,)因为上面后者是12*64=768,所以最后是768维度的向量768
name = bert/encoder/layer_9/attention/self/value/kernel:0, shape = (768, 768)这个是输出矩阵形状对应的value,因为是self-attention,所以输出与输入的形状是相同的,所以也是(768, 12*64)589824
name = bert/encoder/layer_9/attention/self/value/bias:0, shape = (768,)因为上面后者是12*64=768,所以最后是768维度的向量589824
name = bert/encoder/layer_9/attention/output/dense/kernel:0, shape = (768, 768)全连接第一层 768*768589824
name = bert/encoder/layer_9/attention/output/dense/bias:0, shape = (768,)全连接对应的bias768
name = bert/encoder/layer_9/attention/output/LayerNorm/beta:0, shape = (768,)LayerNorm beta参数,因为单词向量表示是768维,所以是768个768
name = bert/encoder/layer_9/attention/output/LayerNorm/gamma:0, shape = (768,)LayerNorm gamma参数,因为单词向量表示是768维,所以是768个768
name = bert/encoder/layer_9/intermediate/dense/kernel:0, shape = (768, 3072)全连接第二层是768*30722359296
name = bert/encoder/layer_9/intermediate/dense/bias:0, shape = (3072,)全连接对应的bias3072
name = bert/encoder/layer_9/output/dense/kernel:0, shape = (3072, 768)全连接第三层,将神经元的个数降低到768,好进行下一层的multi-head attention2359296
name = bert/encoder/layer_9/output/dense/bias:0, shape = (768,)全连接对应的bias768
name = bert/encoder/layer_9/output/LayerNorm/beta:0, shape = (768,)LayerNorm beta参数,因为单词向量表示是768维,所以是768个768
name = bert/encoder/layer_9/output/LayerNorm/gamma:0, shape = (768,)LayerNorm gamma参数,因为单词向量表示是768维,所以是768个768
name = bert/encoder/layer_10/attention/self/query/kernel:0, shape = (768, 768)这个是输入矩阵形状对应的query,正常是(768,12*64)所以最后变成了(768, 768)589824
name = bert/encoder/layer_10/attention/self/query/bias:0, shape = (768,)因为上面后者是12*64=768,所以最后是768维度的向量768
name = bert/encoder/layer_10/attention/self/key/kernel:0, shape = (768, 768)这个是输出矩阵形状对应的key,因为是self-attention,所以输出与输入的形状是相同的,所以也是(768, 12*64)589824
name = bert/encoder/layer_10/attention/self/key/bias:0, shape = (768,)因为上面后者是12*64=768,所以最后是768维度的向量768
name = bert/encoder/layer_10/attention/self/value/kernel:0, shape = (768, 768)这个是输出矩阵形状对应的value,因为是self-attention,所以输出与输入的形状是相同的,所以也是(768, 12*64)589824
name = bert/encoder/layer_10/attention/self/value/bias:0, shape = (768,)因为上面后者是12*64=768,所以最后是768维度的向量589824
name = bert/encoder/layer_10/attention/output/dense/kernel:0, shape = (768, 768)全连接第一层 768*768589824
name = bert/encoder/layer_10/attention/output/dense/bias:0, shape = (768,)全连接对应的bias768
name = bert/encoder/layer_10/attention/output/LayerNorm/beta:0, shape = (768,)LayerNorm beta参数,因为单词向量表示是768维,所以是768个768
name = bert/encoder/layer_10/attention/output/LayerNorm/gamma:0, shape = (768,)LayerNorm gamma参数,因为单词向量表示是768维,所以是768个768
name = bert/encoder/layer_10/intermediate/dense/kernel:0, shape = (768, 3072)全连接第二层是768*30722359296
name = bert/encoder/layer_10/intermediate/dense/bias:0, shape = (3072,)全连接对应的bias3072
name = bert/encoder/layer_10/output/dense/kernel:0, shape = (3072, 768)全连接第三层,将神经元的个数降低到768,好进行下一层的multi-head attention2359296
name = bert/encoder/layer_10/output/dense/bias:0, shape = (768,)全连接对应的bias768
name = bert/encoder/layer_10/output/LayerNorm/beta:0, shape = (768,)LayerNorm beta参数,因为单词向量表示是768维,所以是768个768
name = bert/encoder/layer_10/output/LayerNorm/gamma:0, shape = (768,)LayerNorm gamma参数,因为单词向量表示是768维,所以是768个768
name = bert/encoder/layer_11/attention/self/query/kernel:0, shape = (768, 768)这个是输入矩阵形状对应的query,正常是(768,12*64)所以最后变成了(768, 768)589824
name = bert/encoder/layer_11/attention/self/query/bias:0, shape = (768,)因为上面后者是12*64=768,所以最后是768维度的向量768
name = bert/encoder/layer_11/attention/self/key/kernel:0, shape = (768, 768)这个是输出矩阵形状对应的key,因为是self-attention,所以输出与输入的形状是相同的,所以也是(768, 12*64)589824
name = bert/encoder/layer_11/attention/self/key/bias:0, shape = (768,)因为上面后者是12*64=768,所以最后是768维度的向量768
name = bert/encoder/layer_11/attention/self/value/kernel:0, shape = (768, 768)这个是输出矩阵形状对应的value,因为是self-attention,所以输出与输入的形状是相同的,所以也是(768, 12*64)589824
name = bert/encoder/layer_11/attention/self/value/bias:0, shape = (768,)因为上面后者是12*64=768,所以最后是768维度的向量589824
name = bert/encoder/layer_11/attention/output/dense/kernel:0, shape = (768, 768)全连接第一层 768*768589824
name = bert/encoder/layer_11/attention/output/dense/bias:0, shape = (768,)全连接对应的bias768
name = bert/encoder/layer_11/attention/output/LayerNorm/beta:0, shape = (768,)LayerNorm beta参数,因为单词向量表示是768维,所以是768个768
name = bert/encoder/layer_11/attention/output/LayerNorm/gamma:0, shape = (768,)LayerNorm gamma参数,因为单词向量表示是768维,所以是768个768
name = bert/encoder/layer_11/intermediate/dense/kernel:0, shape = (768, 3072)全连接第二层是768*30722359296
name = bert/encoder/layer_11/intermediate/dense/bias:0, shape = (3072,)全连接对应的bias3072
name = bert/encoder/layer_11/output/dense/kernel:0, shape = (3072, 768)全连接第三层,将神经元的个数降低到768,好进行下一层的multi-head attention2359296
name = bert/encoder/layer_11/output/dense/bias:0, shape = (768,)全连接对应的bias768
name = bert/encoder/layer_11/output/LayerNorm/beta:0, shape = (768,)LayerNorm beta参数,因为单词向量表示是768维,所以是768个768
name = bert/encoder/layer_11/output/LayerNorm/gamma:0, shape = (768,)LayerNorm gamma参数,因为单词向量表示是768维,所以是768个768
name = bert/pooler/dense/kernel:0, shape = (768, 768)因为该任务是判断两个句子是否是一个含义的任务,使用[CLS]向量,先进行一层全连接589824
name = bert/pooler/dense/bias:0, shape = (768,)全连接对应的bias768
name = output_weights:0, shape = (2, 768)因为是二分类任务,所以需要将向量的维度降低到21536
name = output_bias:0, shape = (2,)全连接对应的bias2
116552450
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
编译原理是计算机专业的一门核心课程,旨在介绍编译程序构造的一般原理和基本方法。编译原理不仅是计算机科学理论的重要组成部分,也是实现高效、可靠的计算机程序设计的关键。本文将对编译原理的基本概念、发展历程、主要内容和实际应用进行详细介绍编译原理是计算机专业的一门核心课程,旨在介绍编译程序构造的一般原理和基本方法。编译原理不仅是计算机科学理论的重要组成部分,也是实现高效、可靠的计算机程序设计的关键。本文将对编译原理的基本概念、发展历程、主要内容和实际应用进行详细介绍编译原理是计算机专业的一门核心课程,旨在介绍编译程序构造的一般原理和基本方法。编译原理不仅是计算机科学理论的重要组成部分,也是实现高效、可靠的计算机程序设计的关键。本文将对编译原理的基本概念、发展历程、主要内容和实际应用进行详细介绍编译原理是计算机专业的一门核心课程,旨在介绍编译程序构造的一般原理和基本方法。编译原理不仅是计算机科学理论的重要组成部分,也是实现高效、可靠的计算机程序设计的关键。本文将对编译原理的基本概念、发展历程、主要内容和实际应用进行详细介绍编译原理是计算机专业的一门核心课程,旨在介绍编译程序构造的一般原理和基本

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值