人工智能曾小健
码龄5年
  • 135,683
    被访问
  • 515
    原创
  • 4,890
    排名
  • 54
    粉丝
关注
提问 私信
  • 加入CSDN时间: 2017-02-19
博客简介:

人工智能曾小健

博客描述:
推荐系统、量化金融、数据结构
查看详细资料
  • 6
    领奖
    总分 1,790 当月 237
个人成就
  • 获得35次点赞
  • 内容获得9次评论
  • 获得181次收藏
创作历程
  • 86篇
    2022年
  • 446篇
    2021年
  • 2篇
    2020年
  • 2篇
    2019年
  • 6篇
    2018年
成就勋章
TA的专栏
  • Linux
    1篇
  • 知识图谱
    1篇
  • 数字货币
  • 搜索
    3篇
  • 量化金融
    8篇
  • 脑科学
    4篇
  • 数据挖掘
    20篇
  • 百面推荐系统
    1篇
  • 图神经网络
  • NLP自然语言处理
    17篇
  • 新科技
  • OCR文字识别
    5篇
  • 自然语言处理
    4篇
  • 推荐系统
    83篇
  • Python
    66篇
  • leetcode
    164篇
  • 大数据
    20篇
  • 计算机视觉
    5篇
  • C++
    37篇
  • 集成学习
    5篇
  • Hadoop
    7篇
  • 机器学习指标
    1篇
  • SQL
    7篇
  • Redis
    4篇
  • hash table
    1篇
  • Python数据结构
    3篇
  • Leetcode-Stack
    7篇
  • 专利申请
    2篇
  • 深度学习模型
    1篇
  • NLP前沿-量化
    1篇
  • TensorRT
    1篇
  • 模型量化
    1篇
  • wangluo
    2篇
  • CUDA
    1篇
  • 剑指Offer - 栈
    2篇
  • 算法比赛
    1篇
  • 预训练语言模型
    9篇
  • 推荐系统周边
    4篇
  • 深度学习
    5篇
  • 剑指Offer
    17篇
  • 牛客网
    3篇
  • Leetcode-Tree
    10篇
  • ZOJ
    3篇
  • ACM
    4篇
  • 机器学习
    3篇
  • Visual Studio
    1篇
  • 评价指标
    1篇
  • 数据科学
    3篇
  • Leetcode-String
    10篇
  • OpenCV
    4篇
  • C++编译
    2篇
  • OpenVINO
    2篇
  • 目标检测
    3篇
  • 元学习
    3篇
  • 学术AI专题(工业少用)
    3篇
  • 纯AI计算机理论
    2篇
  • 百度Apollo
    1篇
  • 智能驾驶
    14篇
  • 驾驶规划模块
    2篇
  • C++ STL标准模板库
    2篇
  • leetcode-array and string
    1篇
  • leetcode-Math
    4篇
  • Leetcode-design
    2篇
  • Leetcode-Dynamic Programming
    4篇
  • Leetcode-Sorting and Searching
    2篇
  • Leetcode-LinkedList
    6篇
  • 目标追踪
    1篇
  • Kaggle
    1篇
  • 移动端深度学习
    1篇
  • leetcode_Array
    4篇
  • 牛客网 - 数组
    1篇
  • LibTorch
    1篇
  • wsl2 Ubuntu 
    2篇
  • 深度学习框架
    1篇
  • ACM-ZOJ
    1篇
  • HackerRank C++
    1篇
  • 多语言编程
    2篇
  • python机器学习
    10篇
  • go
    1篇
  • 强化学习
    1篇
兴趣领域 设置
  • 人工智能
    数据挖掘深度学习自然语言处理
  • 最近
  • 文章
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

6.最长回文子串 leetcode longestPalindrome

class Solution: def longestPalindrome(self, s: str) -> str: def palindrome(s, l, r): while l >= 0 and r < len(s) and s[l] == s[r]: l -= 1 r += 1 return s[l+1:r] .
原创
发布博客 前天 23:07 ·
11 阅读 ·
0 点赞 ·
0 评论

Array6: 350. 两个数组的交集 II

class Solution: def intersect(self, nums1: List[int], nums2: List[int]) -> List[int]: if len(nums1) > len(nums2): return self.intersect(nums2, nums1) m = collections.Counter() for num in nums1: .
原创
发布博客 2022.05.24 ·
15 阅读 ·
0 点赞 ·
0 评论

win传文件到linux:无需密码通过scp命令+key的方式实现文件传输

如果觉得scp每次都要输入密码很麻烦, 那么这是解决方案.假设你平时在windows上开发,用户名是xiang, 你有一台Ubuntu服务器wdksw.com, 用户名是root.现在你准备上传一些文件到服务器上.为方便叙述,w表示windows, u表示Ubuntu.w$表示在windows端输入的命令, u$表示在Ubuntu端输入的命令.首先在w端生成一对keyw$ssh-keygen -t rsa如果一直按enter,则会在C:Usersxiang.ssh文件夹下生成id_rsa和i..
原创
发布博客 2022.05.23 ·
30 阅读 ·
0 点赞 ·
0 评论

力扣top interview ques 数组第三题:189.旋转数组

class Solution: def rotate(self,nums:List[int],k:int) -> None: length = len(nums) k %= length nums[:] = nums[::-1] nums[:k] = nums[:k][::-1] nums[k:] = nums[k:][::-1]class Solution: def rotate(se...
原创
发布博客 2022.05.21 ·
40 阅读 ·
0 点赞 ·
0 评论

买卖股票的最佳时机2

class Solution: def maxProfit(self,prices:List[int]) -> int: profit = 0 for i in range(1,len(nums)): tmp = prices[i] - prices[i-1] if tmp>0: profit +=tmp return profit
原创
发布博客 2022.05.21 ·
12 阅读 ·
0 点赞 ·
0 评论

recsys2022比赛baseline - 基于ItemCF

基于ItemCF的BaselineItemCF是一种基于统计的方法,其核心步骤有两步:• 第一步:根据用户的历史记录(session)来构建Item-Item的相似矩阵,这个相似矩阵是通过item-item的共现次数来构建的。• 第二步:根据Item-Item相似矩阵与session来进行召回,具体做法就是遍历session中的所有item,然后根据item-item相似矩阵来推荐与session中相似的item基础版本的itemcf线上得分0.165import osimport
原创
发布博客 2022.05.21 ·
37 阅读 ·
0 点赞 ·
0 评论

CI&T Deskdrop dataset

在本节中,我们加载 Deskdrop 数据集,其中包含来自 CI&T 内部通信平台 (DeskDrop) 的 12 个月日志(2016 年 3 月 - 2017 年 2 月)的真实样本。它包含大约 73,000 名登录用户与平台上共享的 3,000 多篇公共文章的互动。它由两个 CSV 文件组成:shared_articles.csvusers_interactions.csv看看这个内核以获得更好的数据集图片:桌面数据集 EDADeskDrop 文章主题建模包含有关平台中共享的文
原创
发布博客 2022.05.20 ·
21 阅读 ·
0 点赞 ·
0 评论

Outbrain点击预测比赛 -- 数据

https://yq.aliyun.com/articles/293596https://www.kaggle.com/c/outbrain-click-predictionhttps://www.kaggle.com/anokas/outbrain-eda用户个性化点击率预估基本场景:document_id(document)  uuid(user)  ad_id(a set of ads)原始数据:page_views.csv:the log of users visi.
原创
发布博客 2022.05.20 ·
9 阅读 ·
0 点赞 ·
0 评论

RecSys2022 fashion rec challenge

今年的挑战主要集中在时尚推荐上。当给定用户会话、购买数据和有关项目的内容数据时,您能否准确预测会话结束时将购买的时尚单​​品?内容数据由项目的描述性标签组成(例如颜色、长度、领口、袖子样式等)。标签是使用 Dressipi 的人机交互系统分配的,时尚专家在该系统中审查、纠正和确认标签的正确性,因此我们希望这是一个高精度和高质量的数据集。重要的是能够根据用户在当前会话期间所做的事情做出推荐,以创造可能导致购买的最佳体验。时尚领域的细微差别使得准确的会话预测比其他领域更重要:平均 51% 的访客是新
原创
发布博客 2022.05.20 ·
41 阅读 ·
0 点赞 ·
0 评论

知识图谱用于推荐

知识图谱(Knowledge Graph, KG)也可以看作一种辅助信息,KG是一种有向异构图,它的节点表示实体,边表示实体间关系。一个KG通常包含多个三元组,形如(head, relation, tail),表示头实体与尾实体存在某种关系。我们假定推荐系统中的物品也是一个KG中的节点,因此KG提供了物品和物品之间的关系。1. 知识图谱实例以电影推荐为例,一个用户看过的电影可以靠KG中的实体连接到其他电影,通过合理推断,可以认为用户也会喜欢与该电影紧密连接的电影,因此从电影的属性和特征出发,一个KG
原创
发布博客 2022.05.19 ·
56 阅读 ·
0 点赞 ·
0 评论

基于商品描述文案的点击预测模型

黄皓炫,盛 武† (安徽理工大学 经济与管理学院, 安徽 淮南 232000)摘 要:为了预测商品描述文案中商品特征对点击的影响,量化分析用户的消费行为特征及缓解冷启动问题,建立 了一种基于 LDA 模型和文本情感分析的点击预测模型。该模型基于 LDA 主题模型对商品描述词的分类筛选,对构 成词进行情感分析,构建特征向量以表示用户对商品各特征的情感倾向,并通过 LightGBM 算法进行对点击的预测。 模型可以将非结构化文本数据转换为结构化数据,量化用户对商品不同特征的兴趣倾向,并利用不同商品的相似特
原创
发布博客 2022.05.12 ·
56 阅读 ·
0 点赞 ·
0 评论

多路召回 新闻推荐

import pandas as pd import numpy as npfrom tqdm import tqdm from collections import defaultdict import os, math, warnings, math, picklefrom tqdm import tqdmimport faissimport collectionsimport randomfrom sklearn.preprocessing import MinMax...
原创
发布博客 2022.05.12 ·
15 阅读 ·
0 点赞 ·
0 评论

Offer帮 纽约Quant求职

1. 什么是 QuantQuant 的工作就是通过编程设计来实现金融的数学模型,有点类似码农和金融狗的结合体,也被戏称为 “矿工”。Quant 其实是很多量化(Quantitative)有关的职位的统称,包括数据处理(Data Processing),衍生品定价(Derivative Pricing),风险管理(Risk Management)和投资策略 (Investment Strategy)等等。 很多和数据,建模有关的职位都可以叫自已 Quant。不过通常情况下,也是这里主要介绍的,是指卖方..
原创
发布博客 2022.05.12 ·
105 阅读 ·
0 点赞 ·
0 评论

Kaggle Crypto炒币大赛金牌方案汇总。

加密货币每天交易价值超过400亿美元。是最受欢迎的投机和投资资产之一,但事实证明,它们的波动性极大。快速波动的价格让少数百万富翁成为幸运儿,也给其他人带来了巨大的损失。这些价格变动中有一些是可以提前预测的吗?本次竞赛,我们将使用机器学习专业知识预测14种流行加密货币的短期回报。我们收集了数百万行2018年的高频市场数据,可用于构建模型。数千名交易者同时进行的活动确保了大多数信号都是暂时的,持久的alpha将难以找到,过拟合的危险将相当大。此外,自2018年以来,人们对加密市场的兴趣激增,因此我们数据
原创
发布博客 2022.05.11 ·
59 阅读 ·
0 点赞 ·
0 评论

恭喜poteman H&M推荐赛摘金

16th place solutionPosted inh-and-m-personalized-fashion-recommendations数据分割我们将数据分为3组:CG1(客户组1)是过去30天内交易的用户;CG2(客户组2)是在过去30天内没有交易的用户,但是有历史上的交易。CG3(客户组3)是历史上没有交易的用户。CG1和CG2:Multi-Recalls +等级。CG3:流行物品召回。召回热门商品召回 回购召回 binaryNet 召回 I...
原创
发布博客 2022.05.11 ·
22 阅读 ·
0 点赞 ·
0 评论

力扣 最长公共前缀,暴力法

class Solution: def longestCommonPrefix(self, strs: List[str]) -> str: if not strs: return '' s1, s2 = min(strs), max(strs) for i in range(len(s1)): if s1[i] != s2[i]: return s1[.
原创
发布博客 2022.05.10 ·
13 阅读 ·
0 点赞 ·
0 评论

整数反转 力扣

class Solution: def reverse(self, x: int) -> int: INT_MIN, INT_MAX = -2**31, 2**31 - 1 rev = 0 while x != 0: # INT_MIN 也是一个负数,不能写成 rev < INT_MIN // 10 if rev < INT_MIN // 10 + 1 or rev > INT.
原创
发布博客 2022.05.09 ·
260 阅读 ·
0 点赞 ·
0 评论

插入区间 leetcode

给你一个 无重叠的 ,按照区间起始端点排序的区间列表。在列表中插入一个新的区间,你需要确保列表中的区间仍然有序且不重叠(如果有必要的话,可以合并区间)。class Solution: def insert(self, intervals: List[List[int]], newInterval: List[int]) -> List[List[int]]: left, right = newInterval placed = False
原创
发布博客 2022.05.08 ·
8 阅读 ·
0 点赞 ·
0 评论

从0到1带你入门RabbitMQ

从原理到实践,从0到1带你入门RabbitMQ,需要学习RabbitMQ的同学,欢迎来戳~~常见的消息队列很多,主要包括RabbitMQ、Kafka、RocketMQ和ActiveMQ。这篇文章只讲RabbitMQ,属于基础入门篇。消息队列消息队列模式消息队列目前主要2种模式,分别为“点对点模式”和“发布/订阅模式”。点对点模式一个具体的消息只能由一个消费者消费。多个生产者可以向同一个消息队列发送消息;但是,一个消息在被一个消息者处理的时候,这个消息在队列上会...
原创
发布博客 2022.05.07 ·
652 阅读 ·
0 点赞 ·
0 评论

4. 从神经元到意识的层级涌现

4. 从神经元到意识的层级涌现在最近的神经科学实验中,模块化的模式完成也变得越来越明显。人类大脑是生物学中智能行为的顶峰。神经系统由大量的神经元构成,每个神经元通常都与大量的其他神经元相连。在演化过程中,人类的大脑体积越来越大,连接越来越紧密,达到了天文数字——人类的神经元数量接近1000亿,每个神经元之间有数十万个连接。这种向更多神经元和连接的转变不可能是巧合:一个拥有许多相互作用单元的系统正是变得功能更强大和更复杂所需要的。但是这些巨大的神经回路到底是做什么的呢?虽然许多神经科学家都同意神经
原创
发布博客 2022.05.06 ·
222 阅读 ·
0 点赞 ·
0 评论
加载更多