自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

强化学习曾小健

强化学习、大模型、AIGC、AGI

  • 博客(5299)
  • 资源 (1)
  • 收藏
  • 关注

原创 我叫曾小健,开发第一线:新Windows与开发环境:大模型LLM/量化 Win-Mac统一快捷键体验 win强制关机:shutdown /s /f /t 0

对于开发者用Windows来说,最大的建议就是不要用Windows,既然必须要用,那就来吧!!!

2023-07-24 10:45:24 545 1

原创 Ubuntu Linux AI大模型开发常用命令 - 更新中 包括NVIDIA状态,和安装相关常用软件包,没事就背背 - 背诵创造美好生活

Ubuntu AI大模型开发常用命令 - 更新中 包括NVIDIA状态,NVIDIA状态,实时更新:和安装相关常用软件包没事就背背,增加开发效率。

2023-06-21 11:28:05 770 1

原创 别沉迷iPhone了!Steam正在成为下一个苹果! Valve刚在11月12日扔下重磅炸弹,桌面主机Steam Machine、XR眼镜Steam Frame

这货是Valve十年后复活的“Steam Machine”,体积小巧如6英寸魔方,专为客厅/桌面设计,运行基于Linux的SteamOS系统,完美兼容Windows游戏(基于自研的兼容层Proton实现Windows游戏,神器在手,天下我有)!苹果当年从iPod杀入手机,Valve从Deck杀入客厅,生态闭环!GenAI大模型的重大突破,正在将计算机生态转向超高存储带宽时代,HBM、HBF正在催生新的计算机软硬件生态,大模型开发部署推理服务生态正在成为电脑计算机核心的服务生态,这些都需要新的软硬件技术。

2025-11-14 02:06:31 536

原创 刚刚,DeepMind再登Nature:AlphaProof首夺国际数学奥林匹克银牌

AlphaProof 是她所用过的第一款“真正实用的 AI 工具”,拥有着“高度可靠”的证明质量,每一步的推理都能获得来自证明辅助工具的即时反馈,从而避免了自然语言推理中常见的模糊与错误,这一点是自然语言模型所不具备的。不同的是,这一次的“棋盘”不再来自围棋或国际象棋,而是数学定理本身。与基于自然语言模型的推理不同,AlphaProof 的每一步逻辑均通过 Lean 的验证器审查,这种“形式化可验证”的方法,为人工智能在科学推理和理论研究中的应用奠定了重要基础。仍难以处理开放性、创造性极强的数学问题。

2025-11-14 01:20:18 583

原创 用户破8亿!GPT-5.1来了,表情包含量可自定义

原创 陈骏达智东西2025年11月13日 08:38GPT-5.1来了,没有基准测试。编译 |陈骏达编辑 |漠影智东西11月13日报道,今天,OpenAI宣布推出了GPT-5系列的最新升级版——GPT-5.1,包括两个主要型号:GPT-5.1 Instant和GPT-5.1 Thinking。据OpenAI的描述,该系列模型在智能和沟通方式上都取得了提升,不仅“更会想”,也“更好聊”。OpenAI为ChatGPT提供了更为直观、更有效的语气控制选项。

2025-11-14 00:37:26 516

原创 深度,AI繁荣的背后是什么? 泡沫

今天探讨下这几年大模型引发的AI热潮,AI无疑是一场史诗级的革命,但在繁荣的背后,有一些不太协调的声音。一边是,冰冷的大裁员。近期亚马逊宣布裁员3万人、微软削减1.5万岗位!据统计2025年全球超18万名互联网从业者被优化,而且AI公司们给出了一致且“合理”解释——“为AI腾出资金”。另一边却是狂热的烧钱:AI领域累计投入突破3000亿美元,随着Meta、甲骨文纷纷发债,市场才惊醒:“如果AI真赚钱,为什么还要借这么多钱?”更糟的是,债券“违约风险”还在暴涨。

2025-11-14 00:35:29 640

原创 qs ranking 2026 世界大学排名

英國高等教育調查中心(QS,Quacquarelli Symonds)於今年6月公布「2026世界大學排名」。調查的方式主要從科研與發現、學術聲譽、教授的論文引用數量、就業與結果、雇主聲譽、學習體驗、師生比例、國際化水平、可持續性等各方面綜合評估。因排名的學校眾多,受限於版面,本公眾號僅編輯大家關心的一些學校排名,完整的名單請點擊"閱讀原文"查看。世界TOP20亞洲TOP20大陸TOP20台灣TOP20阅读原文​

2025-11-10 16:37:51 254

原创 Dexmal 原力灵机硬核开源Dexbotic:一站式VLA代码库,打破重复造轮子困境

在具身智能的发展道路上,Dexbotic的意义远不止一个开源工具箱。它的出现,不仅显著简化了VLA模型的复现与实验流程、显著提升研究效率,还通过高性能预训练模型与模块化架构推动了具身智能研究的发展,是解决具身大脑的关键一步。对研究者而言,不仅可以使用Dexbotic开发更多真实世界任务,还能把基于Dexbotic开发的策略提交至。

2025-11-08 06:04:14 1010

原创 人形 URDF 和互联网和知识图谱常用的json/xml的异同和优劣, 请你着中体现为什么需要URDF

人形 URDF 和互联网和知识图谱常用的json/xml的异同和优劣, 请你着中体现为什么需要URDF。

2025-11-08 05:46:33 945

原创 墨菲定律(Murphy’s Law)索德定律(Sod’s Law) 帕金森定律(Parkinson’s Law)彼得原理(Peter Principle)

(Murphy’s Law)”吧?常被误写成“murfuy”或戏称“孟非定律”。出错的事,都会出错(而且通常在最糟糕这不是严格的物理定律,而是一种经验法则/心理学观察,用来提醒我们:人会忽视小概率风险、系统会在薄弱环节失效、巧合常在坏方向“对齐”。简单例子:排队总觉得旁边那条更快;U盘没备份的那份文件偏偏会损坏;复杂系统里,越多部件越可能出现联动故障。正确用法不是“消极迷信”,而是:提前做(单点失败会出事)。做(假设最坏情况)。简化流程、减少。用评估风险,而不是靠感觉。

2025-11-08 04:55:09 640

原创 具身智能新突破!100亿参数基础模型!GEN-0:机器人的Scaling Law来了?

这里就不过多展开实验数据了,总之结果表明:同时具有低预测误差和低逆 KL 散度的模型,在进行后训练的监督微调 (SFT) 时往往表现更好,而具有高预测误差和低逆 KL 散度的模型,则倾向于在分布上更具多模态性,这可能有助于后训练阶段的强化学习。Generalist 与多家云服务商合作,构建了定制的上传机器,扩展到 O (10K) 级核心用于持续的多模态数据处理,压缩了数十 PB 的数据,并使用了前沿视频基础模型背后的数据加载技术,能够在每训练一天就吸收掉 6.85 年的真实世界操作经验。

2025-11-07 01:49:00 1007

原创 请你介绍将仿真训练好的策略部署到真实机器人上的流程,包括控制接口设计、实时性保障等

请你介绍将仿真训练好的策略部署到真实机器人上的流程,包括控制接口设计、实时性保障等。

2025-11-07 01:29:42 41

原创 [被AI取代怎么办]归国科学家颜宁回应研究方向正被AI取代:还停留在2017年的水平

比如说,颜宁团队Cav2.2的结构去年发表晚了,尚未放在数据库里被AlphaFold用来训练,所以它预测的模型就与实验结构严重不符。,与大名鼎鼎的围棋AI AlphaGo师出同门,可以根据基因序列预测蛋白质的3D形状,而且准确性惊人。颜宁也在与专门做结构预测的AI团队合作,分别做预测和实验,测试新型小分子与蛋白的相互作用。对此,忙于工作、懒得辟谣的颜宁,还是在个人微博露面,作了一番科普,也谈了自己的想法。有一份论文,讨论AlphaFold的局限性,而到了今天,这份报告仍然一张都不用改。

2025-11-07 01:12:04 305

原创 代理式AI(Agentic AI)的崛起:2029年代理式AI系统将占全球AI总投资的近50%

到2029年,当代理式AI真正占据AI投资"半壁江山"时,当前的投资布局和技术选择将决定各国在未来AI格局中的位置。这一技术跃迁的核心驱动力是代理式AI(Agentic AI)的崛起,它标志着AI从“感知智能”迈向“行动智能”的关键飞跃。这种转变让AI成为工作流程的“组织者”和“协调者”,而不仅仅是效率提升的“工具”。:资本密集、技术领先、生态完善,通过头部企业(OpenAI、Anthropic)与科技巨头(谷歌、微软、亚马逊、Meta)的协同,实现从大模型研发到代理式AI应用的全链条掌控。

2025-11-07 01:07:42 843

原创 CycleResearcher和CycleReviewer的框架 开源后训练大型语言模型(LLMs)作为自主代理来执行自动化研究和审查的全周期的可能性。

​ 这篇文章的研究背景是科学发现的自动化一直是研究社区的一个长期目标,尤其是在利用商业大型语言模型(LLMs)作为研究助手或创意生成器方面取得了显著进展。然而,使用开源LLMs完全自动化整个研究过程仍然是一个未被充分探索的领域。

2025-11-07 00:56:29 549

原创 超越人类183%!DeepScientist实现全自动科学发现,超越人类前沿研究的科学突破

这项工作首次大规模地证明,AI自动化科学发现系统能够持续性地、渐进式地超越人类科研前沿,将数年的研究进展压缩至数周完成 ,这预示着一个由人类智慧设定目标、AI进行大规模探索的科研新范式的到来。其中CycleResearcher系首个经过同行评审的全流程科研大模型,并被外国科技媒体TuringPost评为AI自主科学发现全球十大进展。尽管现有的“AI科学家”系统能够产生新颖的发现,但它们往往因。183.7%、1.9%和7.9%的显著优势超越了人类最先进的。的分层循环来执行,并利用一个持续累积的“

2025-11-07 00:51:40 287

原创 人工智能科学家距离改变世界还有多远 ?

如果没有有效的、稳健的自我批评机制,系统可能会陷入错误累积的循环,从而损害其研究成果的原创性和可靠性。他们进行了一项大规模的人工研究,招募了 79 位专家研究人员,对来自三种不同情境的 49 个想法进行盲审:专家撰写的想法、人工智能生成的想法以及由人类专家重新排序的人工智能生成的想法。这些评估结果一致表明,LLM 在将概念理解或初始计划转化为可验证的正确且可运行的代码方面面临着巨大的困难,这凸显了其验证能力的根本局限性,并强调了系统化的验证和实施能力对于人工智能科学家系统成熟的重要性。

2025-11-06 18:40:11 897

原创 Michael Burry 成为《大空头》 传奇大空头做空AI

它卖的是最实在的东西——GPU、Hopper、算力——这些是 AI 工业的钢筋水泥。从最初 X 平台上那句意味深长的“sometimes the only winning move is not to play”,到如今的 SEC 文件,Burry 的行动方式一如既往——不多言、不求共识,只在最喧嚣的时候逆向开仓。就在不久前,OpenAI 的 CFO Sarah Friar 在《华尔街日报》Tech Live 上的发言堪称一次“供词”——她说市场对 AI 的泡沫担忧“过度”,还强调“我们需要更多狂热”。

2025-11-06 18:32:23 1039

原创 涌现观点|终局真相:月薪五万,一夜清零,这不是衰退,而是AI发动的阶层战争

让我们打开微软、Meta和Google在2025年的财报,你会发现一条惊人相似的资本流向:在“SG&A”(销售、一般与管理费用,主要是人力成本)科目下削减的数十上百亿美元,被精准地、几乎一分不差地注入到了“CapEx”(资本支出,主要是GPU和数据中心)科目中。少数掌握“算力资本”的人——云平台巨头、顶级算法公司及其所有者——将成为新的“数字贵族”,而绝大多数依赖出卖“数字劳动”的人,其社会地位将面临不可逆的下沉风险。曾经的白领专家,失业后可能成为AI的“数据标注员”,或者依赖平台的“数字零工”。

2025-11-06 18:29:21 867

原创 OpenAI产品线拉出来吓我一跳,奥特曼不愧是YC出身

关注前沿科技 量子位 2025年10月27日 13:35 北京OpenAI现在已经完全是互联网大厂的路数了。顶级分发渠道(ChatGPT)+ 铺开多条产品线——人形机器人、Agent、个人AI设备、社交、浏览器、购物、音乐、定制化模型……啥都有。而且,别家的产品需要AI+,GPT+AI自己就是产品。不得不说,奥特曼这位来自美国顶级初创孵化器Y Combinator的CEO,真是擅长玩这种玩法:事情是这样的。风投人Deedy在推特上整理了一份OpenAI现在的产品线,他表示这让他想起了当年的Facebook和

2025-11-06 17:45:43 854

原创 DeepScientist:逐步推进前沿科学发现

这种新方法在 Who&When 基准测试的“算法生成”设置下取得了 47.46 的分数,比人类最先进的基线水平提高了惊人的 183.7%。此时,您可以立即开始构建自己的 DeepScientist 或复现我们的工作(或许可以创建一个“开源 DeepScientist”,我们强烈鼓励这样做!您的实现很可能比我们的更优雅、更高效。实现 DeepScientist 并不需要大量的工程投入,尤其是在我们提供了基础组件的情况下。的研究思路,实现了其中 600 个最有前景的假设,并最终生成了在 RAID 数据集上将。

2025-11-06 17:45:32 1021

原创 AI教父辛顿:资本豪赌你失业,不然这些巨额投资就无法获利!

如果AI能让医生的效率提高五倍,那么我们可以用同样的成本获得五倍的医疗服务,因为人们总是希望得到更多的医疗服务,只要价格不变。他提出,为了应对AI带来的就业冲击,社会需要提前布局,通过教育和培训帮助人们转型,发展新的技能,以适应新的劳动力市场需求。他还支持普遍基本收入等社会安全网,认为在AI大规模取代工作的时代,政府有责任保障民众的基本生活,避免出现大规模的社会动荡。亚马逊裁员1.4万,嘴上说着文化调整,内部备忘录可诚实多了:用了AI,效率高了,以后人会更少。他解释说,医疗这行,需求是无限的。

2025-11-06 16:27:22 793

原创 用 ai开发小程序

注意:我在使用AI编程过程中,我是在微信开发平台打开“趣填小学古诗词”的项目以及在cursor工具中也打开了“趣填小学古诗词”,在编译报错时,先将错误抛给cursor平台,让它帮忙修改,修改完成后,同步在微信开发平台进行编译,直到不再报错。1)待AI编写完成后(时间有点久,需要耐心等待),在项目工程的文件目录下,会自动产生如图所示的文件内容(这个是根据实际的需求内容产生的,不一定是相同的文件内容)。2)在微信开发平台,编译已经生成的代码,选择 工具---编译,如图所示。

2025-11-06 11:05:45 999

原创 手把手带你用 AI 2 天撸出6端匿名社交App!

最近完成了一个有趣的实践项目,想跟大家分享一下开发过程和经验总结。⏰2天完成基础功能📱6端运行(iOS、Android、Web、微信/抖音/支付宝小程序)🎯手机验证登录 + 随机匹配 + 实时聊天🔥AI IDE ++ uni-app项目名称:SoulChat[1]- 一款基于随机匹配的匿名聊天应用技术架构图通过这次SoulChat项目实践,我深刻体会到了🎯 需求分析自动化- 模糊想法秒变清晰需求🏗️ 架构设计智能化- 自动生成最佳实践方案⚡ 开发流程可视化- 任务拆解和进度跟踪。

2025-11-06 10:50:42 722

原创 us news2026 年美国大学排名

首页上页1new

2025-11-06 10:29:13 131

原创 基于昇腾NPU的Qwen3量化因子代码生成微调实战

本文将从微调的选题与数据合成讲起,若读者只需昇腾环境下的微调与部署操作,请自行跳至文章后半部分。

2025-11-06 10:07:21 1013

原创 Github热榜第一,今天涨了1w多星的开源AI舆情分析系统。 BettaFish

BettaFish 是一个开源的 AI 原生舆情分析系统,通过多智能体协作,实现从数据采集、事件分析到报告生成的全流程自动化。系统内置新闻爬虫、短视频解析、舆情情感分析、跨平台趋势监测等能力,支持国内外主流媒体、多平台社交网络及评论区的海量数据接入。支持国内外30+主流社交媒体。

2025-11-06 06:43:45 902

原创 让竞争变得无关:乔布斯教我的第一性原理

用户到底需要什么?他发现了一个被所有巨头忽视的真相:工作站市场其实有两个世界:•科学工程市场:传统的技术极客领域,巨头们打得不可开交•专业市场:出版、医疗、法律、教育这些领域,需要强大性能但不想学Unix命令行的人1990年,专业市场只有5万台的规模,Sun一家就占了4万台。看起来很小对不对?但乔布斯看到的是:• 1991年预计翻倍到10万台• 1992年再翻三倍到30万台• 这是一个还没被定义清楚的新市场乔布斯这场演讲最打动我的,不是什么商业策略,而是那种向内求的笃定。

2025-11-04 12:06:23 944

原创 刚刚,阿里祭出Qwen3超大杯思考模型,数学考试满分,实测竟成token“吞金兽”

阿里的Qwen3-Max系列模型已经成为当前AI业内最广受期待的模型之一,在社交媒体的评论区中,已有不少网友开启催更模式。今年9月5日,阿里上线Qwen3系列最强模型。

2025-11-04 10:34:19 597

原创 让本地大模型不再重复推理的缓存技巧

核心思路很简单:当用户用不同方式询问相同问题时,传统缓存系统会视为不同查询而重新推理。值得注意的是,该工具强调"确定性"——相同查询总是得到相同结果,避免了传统缓存系统可能出现的随机性响应问题。这种方法特别适合客服机器人、知识库问答等重复查询较多的场景,能显著降低计算资源消耗。明明"怎么退款"和"如何申请退货"说的是一回事,但缓存系统不认识,每次都得等几秒钟。最终达到99.9%的缓存命中率,成本降低99.9%,响应时间从几秒变成1毫秒。统一的缓存键,实现了近乎即时的重复查询。原创 winkrun。

2025-11-04 10:32:36 381

原创 突发!arXiv新规定:被会议、期刊接收才能挂,workshop都不行

上述两类论文,并非arXiv官方接受的内容类型,过去偶有收录,出于版主裁量,原因在于当时数量少且质量高、对社群有价值。从现在起,arXiv中的CS板块,关于「综述/调研」和「立场」类的论文,全部经由同行评审后,才可以被收录。如今,arXiv CS每月数百篇综述涌进来,90%都是「带注释的文献清单」,基本没有实质性的价值。接下来,「综述」和「立场」论文已被期刊、顶会接收,并完成同行评审后,就可以收录到arXiv CS。最后,arXiv称,如果其他分类也遭AI综述「洪水」淹没,未来也将效仿CS,调整审核政策。

2025-11-04 02:14:27 688

原创 100%复刻人类肌肉骨骼,这家波兰机器人公司要打造真实的《西部世界》

人类目前的构造本身是百万年来自然进化的产物,直立行走带来视野提升,解放双手为工具使用和复杂劳动提供了可能。但从另一个角度来看,这样的构造也是人类与自然妥协的结果,双脚站立并不是唯一的最优选择,其它四足生物的运动效率可能更高;人类双手适合精细操作,但相比较于灵长类动物握力和攀爬能力明显减弱。可见,人类的身体并非完美的设计,而是一种环境适应的产物。同样,机器人无限像人,也并不一定是一个最优解。但不可否认的是,拥有类似人类外形的机器人更容易被接受,因为它们契合了人类的心理预期和情感需求。

2025-11-03 18:55:01 1046

原创 单张4090跑到30fps,范浩强团队让VLA实时跑起来了

此外,研究者基于现有结果探讨了未来的“实时”运行的 VLA 结构,设计出一个有潜力最高实现 480Hz 闭环控制的算法框架。为实现这点,研究者深入分析 Pi0 的模型结构,通过一系列优化把用时从开始的 100+ ms 进行数倍缩减(针对双视角,甚至已经达到 27ms),显著强于 openpi 里采用的基于 jax 的自动优化的结果。本文研究者通过深入分析模型推理过程中的计算问题,融合和并行优化每一个计算步骤,清除了推理方面的大部分障碍,再加上其他方面的优化,最终把整个 VLA 模型跑进了所需的时间之内。

2025-11-03 18:52:22 1130

原创 Meta AI疯狂扩张后大裁员,大量华人科学家瞬间失业,到底啥情况 田渊栋

同样,其他被裁的华人科学家,如XianjunYang(入职仅11个月,离职前论文刚被OpenAI创始人引用),也瞬间成了各大AI实验室争抢的香饽饽。然而,就是这样一位功勋卓著的科学家,连同他的整个团队,被新上任的首席AI官亚历山大王(Alexandr Wang)干净利落地优化了。当然,Meta也并非冷酷无情,田渊栋获得了八个月的薪资作为补偿,这对于一位效力近十年的老将来说,也算是一个体面的告别。它让我们看到,即使是科技巨头,在AI这场烧钱的军备竞赛中也必须精打细算,追求更高的效率和产出。

2025-11-02 15:37:00 691

原创 清华孙富春教授【机器人专题】清华教授带队,1年斩获CVPR冠军!「中科第五纪」近亿元融资背后:具身智能的“换脑”革命

华睿投资、鼎晖百孚、国海创新资本等一众知名机构的入场,押注的并非硬件参数的堆砌,而是一场发生在机器人内核的“静默革命”——用融合知识与数据的通用智能模型,重新定义机器人的思考与行动方式。中科第五纪的技术,让机器人首次具备了应对这种不确定性的潜力,这不仅是效率的提升,更是生产模式的变革。传统的机器人编程方式,或依赖于海量、昂贵的标注数据,或困于僵硬的分层指令,难以应对流水线上千变万化的细微差别。从实验室的代码,到生产线上的精准操作,中科第五纪的快速成长,标志着具身智能正穿越迷雾,踏上规模化商业应用的起点。

2025-11-02 15:28:49 889

原创 强化学习中,可验证奖励的强化学习(RLVR),可验证的奖励,具体怎么验证的

用可编程、可复现的判定器,把模型输出转成客观的 1/0 信号(如答案匹配、测试通过、结构合法),再把这个信号接入 RL 优化,从而减少主观性,提高在可客观评测任务上的学习效率。AISystem & AIInfra (AI系统原理)+1如果你告诉我具体任务(比如一类数学习题或某个代码赛题),我可以直接给你对应的判定器脚本与 RL 套件对接样例。强化学习中,可验证奖励的强化学习(RLVR),可验证的奖励,具体怎么验证的### 强化学习中可验证奖励的强化学习(RLVR)概述。

2025-11-02 15:20:18 1413

原创 国科大博士研究生入学考试《概率论与数理统计》考试大纲 陈希孺,《概率论与数理统计》,中国科学技术大学出版社,2017。茆诗松,吕晓玲,《数理统计学》(第 2

(一)随机事件与概率随机事件与样本空间;事件的关系与运算;概率的定义;概率的性质;古典型概率;几何型概率;条件概率;概率的基本公式;事件的独立性;独立重复试验等。(二)随机变量及其分布随机变量与可测函数;随机变量分布函数的概念及其性质;随机变量的数学期望;随机变量的方差与标准差;常用离散分布、连续分布;随机变量函数的分布等。(三)多维随机变量及其分布多维随机变量及其联合分布;二维离散型随机变量的概率分布、边际分布和条件分布;二维连续型随机变量的概率密度、边际概率密度和条件密度;

2025-10-31 19:00:18 419

原创 英伟达GTC大会!老黄欲重启美国霸权,AI假老黄观看量是他5倍

它不仅能规划百兆瓦级AI工厂的运行蓝图,还通过DSX Flex、DSX Boost、DSX Exchange三大模块,实现电网协同、能效优化与统一管理。在美国政府力推芯片法案、重建制造业链条的背景下,黄仁勋的AI工厂理念恰好成为战略拼图中最关键的一块。AI工厂不只是数据中心的升级版,而是专为大规模生成、训练与部署AI模型而设计的算力工厂。就像当年的电力革命一样,谁能最早完成算力社会化,谁就能在未来的全球产业链中占据主导。,英伟达打通了量子计算与GPU计算之间的通道,让混合量子-经典计算成为可能。

2025-10-31 10:39:18 781

原创 【招聘】复旦大学赵艳霞团队招聘金融气象及相关研究博士后

研究方向为气象为金融(保险、期货、银行等)服务关键技术研发和示范应用。

2025-10-30 19:57:34 807

原创 量化博导牛晓健老师,上海复音企业管理顾问有限公司讲师

中国银行株洲分行,中国银行镇江分行,中国银行威海分行,工商银行温州分行,工商银行石家庄电子银行中心,建设银行成都分行,建设银行镇江分行,交通银行海南省行,交通银行上海总行,招商银行镇江分行,农业银行,农业银行南通支行,光大银行北京分行,民生银行,中信银行天津分行,北京银行,上海银行天津分行,浙江商业银行总行,江苏银行深圳分行等。《风险管理》资深讲师,复旦大学高级金融家《量化投资》、《金融复杂网络》、《供应链金融》、《金融风险管理》、《证券市场投资》等专题讲座教授,复旦大学管理学院EMBA讲座教授。

2025-10-30 19:47:21 316

【长江证券】水下听风,智领深蓝【发现报告 fxbaogao.com】.pdf

【长江证券】水下听风,智领深蓝【发现报告 fxbaogao.com】

2025-06-04

搜索引擎概览 searchengine

搜索引擎概览 searchengine

2024-11-19

11个代码生成相关的论文,20241022更新版本-持续更新,包含代码搜索、代码搜索、代码模型survey、代码评论评估、代码评

find . -mindepth 2 -maxdepth 2 -type f -name "*.pdf" | awk -F/ '{print $(NF-1)}' | sort | uniq -c 2 代码或bug分类 1 代码搜索 1 代码生成 1 代码模型survey 1 代码评论评估 5 代码评估与提示

2024-10-22

10篇代码生成的论文,包括代码评估、代码搜索、代码生成、survey、代码或bug分类

题目 类型 分区 摘要 精读链接 Comparing large language models and humanprogrammers for generating programming code 代码评估 arxiv 评估七种LLMs在生成编程代码方面的性能,探讨不同提示策略对LLMs编码性能的影响,直接比较LLMs与人类程序员的编程能力,评估LLMs在不同编程语言之间生成和翻译代码的能力,以及考察LLMs的计算效率和从过去错误中学习的能力。 A Comparison of the Effectiveness of ChatGPT andCo-Pilot for Generating Quality Python Code 代码评估 会议 包括评估ChatGPT和Copilot在解决LeetCode编程问题上的有效性,探讨ChatGPT在接收到反馈后纠正代码的能力,以及其在提高代码质量和性能方面的潜力。 Program Code Generation with Generative AIs 代码评估 MDPI水刊-Algorithms非SCI 比较了人类生成的代码

2024-10-21

Multimodal Representation for Neural Code Search

—Semantic code search is about finding semantically relevant code snippets for a given natural language query. In the state-of-the-art approaches, the semantic similarity between code and query is quantified as the distance of their representation in the shared vector space. In this paper, to improve the vector space, we introduce tree-serialization methods on a simplified form of AST and build the multimodal representation for the code data. We conduct extensive experiments using a single corpu

2024-10-21

[MDPI水刊Algorithm非SCI]Program Code Generation with Generative AIs

[MDPI水刊-非SCI]Program Code Generation with Generative AIs

2024-10-21

Evolving code with a large language model

Evolving code with a large language model

2024-10-19

avx2_tensorflow-1.9.0-cp36-cp36m-win_amd64.zip

avx2_tensorflow1.9.0_win,avx2_tensorflow-1.9.0-cp36-cp36m-win_amd64.whl

2020-04-23

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除