麻省理工公开课:线性代数 正交向量与子空间

在前面文章《矩阵的四个基本子空间》中提到:
        一个秩为r,m*n的矩阵A中,其行空间和列空间的维数为r,零空间和左零空间的维数分别为n-r,m-r,并且有行空间与零空间正交,列空间与左零空间正交。
       “掌握上面的这个结论就掌握了线性代数的半壁江山!”,MIT教授如是说。那么什么是正交子空间呢?我们首先从我们熟悉的正交向量说起。
 

一、正交向量

判断两个两个向量是否正交----->只需对向量作点乘(dot product)相加,即内积,等于0就是正交的,如X^{T}Y=0,则x和y是正交的,如果x是零向量,y任意或者y是零向量,x任意,那么这两个向量是正交的,即零向量与任何向量都正交。

 

 证明如下:

 由毕达哥拉斯定理:||x||^2+||y||^{}2=||x+y||^{}2

x^{T}x = ||x||^2,y^{T}y = ||y||^{}2,(x+y)^{}T(x+y) = ||x+y||^{}2

替换毕达哥拉斯定理可得:x^{T}x +y^{}Ty = (x+y)^{}T(x+y)\Rightarrowx^{T}x +y^{}Ty = x^{T}x +y^{}Ty +x^{T}y+y^{}Tx,

x^{T}y = y^{}Tx, 可得x^{T}y = 0.

 

二 、正交子空间

定义:两个子空间正交即两个子空间的任意两个向量正交。

    文章开头说到,行空间与零空间正交,列空间与左零空间正交。下面我们来证明行空间与零空间正交,列空间与左零空间正交。

零空间即是AX=0的解所组成的空间,展开上述式子左侧:\begin{bmatrix} row_{}1 \\ ...\\ row_{}n \end{bmatrix}\huge _{X}^{}\textrm{}

展开可以得到:row_{}1^{T}x = 0, row_{}2^{T}x=0,...,row_{}n^{T}x=0 ,它们的线性组合C_{1}row_{}1^{T}x+C_{2}row_{}2^{T}x+... +C_{n}row_{n}^{T} x= 0.

而行空间就是各行的线性组合,所以行空间和零空间正交。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值