机器学习
文章平均质量分 78
机器学习
kangwq2017
这个作者很懒,什么都没留下…
展开
-
1.机器学习与微积分
重点摘要:机器学习简介高等数学概率论一、机器学习简介1.机器学习是什么?计算机从已有数据中学习出规律和模式,在新数据上做出预测。2.学习 = 在某项任务上总结与积攒经验,即积累知识a) 在任务T上提升b) 用P作为评估标准c) 基于经验E例如:中国象棋a) 任务T:下中国象棋b) 性能目标P:比赛中击败对手的百分比c) 训练经原创 2016-05-01 22:53:43 · 3449 阅读 · 1 评论 -
2.数理统计与参数估计
内容简介:A.重要统计量B.重要定理与不等式C.参数估计A.重要统计量一、概率与统计概率:已知总体的分布情况,计算事件的概率统计:总体分布未知,通过样本值估计总体的分布二、概率统计与机器学习的关系1.统计估计的是分布,机器学习训练出来的是模型,模型可能包含了多个分布。2.训练与预测过程的一个核心评价指标是模型的误差。3.误差可以是概率的形式,原创 2016-05-05 22:57:53 · 4284 阅读 · 0 评论 -
3.矩阵分析与应用
1.数学符号2.重新认识Ax=ba)Ax=b的行视图2x-y=1x+y=5b)Ax=b的列视图3.线性相关和线性无关a)线性相关:Ax=0有非0解b)线性无关:Ax=0没有非0解,或者说只有0解c)定义矩阵A=[a1,a2,...,an],如果Ax=0没有非0解,即A线性无关,则矩阵原创 2016-05-22 13:23:38 · 1064 阅读 · 0 评论