3.矩阵分析与应用

注:以下内容整理于七月算法2016年4月班培训讲义,详见: http://www.julyedu.com/

内容简介:

线性代数基础知识

特征分解(凸优化中的重要知识)

SVD分解与应用


1.数学符号


2.重新认识Ax=b


a)Ax=b的行视图
2x-y=1
x+y=5


b)Ax=b的列视图



3.线性相关和线性无关
a)线性相关:Ax=0有非0解


b)线性无关:Ax=0没有非0解,或者说只有0解


c)定义矩阵A=[a1,a2,...,an],如果Ax=0没有非0解,即A线性无关,则矩阵A可逆。

4.Span、基和子空间(Subspace)
a)Span:列的所有线性组合


* 基:如果A=[a1,...,an]是线性无关的,则A是S的一组基


* S可以有不同的基,但是基里向量的个数是相同的,称为S的维数,等于rank(A)。
  一个子空间用一个基就可以完全表示

b)四个基本的子空间
* 列空间(Column Space)(值域、Span)



* 零空间(Null space):零解的集合


定义:N(A)包含Ax=0的所有的解得集合
注意:Ax=b的解并不形成一个子空间

* 行空间(Row space):所有行的线性组合



* 左零空间(left null space): 


5.子空间的关系
a)行空间垂直于零空间(Ax=0)


b)列空间垂直于左零空间


6.利用子空间重新看待线性方程组的解


如果有解,解的形式为x=p+v (p是特解,v是零解)

7.方阵的特征值与特征向量
如果Ax=λx,则称λ是A的特征值,x是A的特征向量

8.特征分解


问题:如何计算A^1000

n*n矩阵A可对角化的充分必要条件:A有n个线性无关的特征向量

9.对称矩阵的特征分解
a)


b)对称矩阵的特征值是实数

c)



10.二次型 


11.特征分解的应用--PCA本质



12.SVD分解:特征分解的广义化



13.SVD和子空间的关系


14.低秩矩阵近似:图像压缩









评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

kangwq2017

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值