神经网络梯度是什么意思,卷积神经网络梯度下降

本文探讨了神经网络中梯度消失的问题,分析了sigmoid函数导致的梯度衰减,并提出通过初始化方法和激活函数如ReLU来缓解。同时解释了梯度下降法在神经网络优化中的作用,介绍了L-M优化算法与动量项的应用,以解决梯度下降的锯齿形模式。此外,还讨论了BP神经网络的训练中梯度(Gradient)和性能(Performance)的概念,以及BP网络的收敛性和局部极值问题。
摘要由CSDN通过智能技术生成

什么是梯度消失?如何加快梯度下降的速度

累乘中一个梯度小于1,那么不断累乘,这个值会越来越小,梯度衰减很大,迅速接近0。在神经网络中是离输出层近的参数,梯度越大,远的参数,梯度越接近0。根本原因是sigmoid函数的缺陷。

方法:1、好的初始化方法,逐层预训练,后向传播微调。2、换激活函数,用relu,leaky——relu。靠的是使梯度靠近1或等于1,避免了在累乘过程中,结果迅速衰减。

避免梯度消失和梯度爆炸的方案:使用新的激活函数Sigmoid函数和双曲正切函数都会导致梯度消失的问题。ReLU函数当x<0,的时候一样会导致无法学习。

利用一些改进的ReLU可以在一定程度上避免梯度消失的问题。例如,ELU和LeakyReLU,这些都是ReLU的变体。

谷歌人工智能写作项目:爱发猫

梯度下降算法是指什么 神经网络

梯度下降法是什么?

梯度下降法(英语:Gradientdescent)是一个一阶最优化算法,通常也称为最陡下降法。

要使用梯度下降法找到一个函数的局部极小值,必须向函数上当前点对应梯度(或者是近似梯度)的反方向的规定步长距离点进行迭代搜索

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值