图片识别 python 神经网络,神经网络提取图片特征

本文详述了使用Python和神经网络进行图像识别的过程,包括图像预处理、字符识别和验证码识别。介绍了如何利用PIL和pytesser库进行图片文本识别,以及通过TuriCreate实现相似图像搜索。此外,探讨了自建OCR系统和使用深度学习框架训练模型进行验证码识别。还提到了Python在图像分类、数据分析和验证码识别等领域的广泛应用实例。
摘要由CSDN通过智能技术生成

Python如何图像识别?

Python图片文本识别使用的工具是PIL和pytesser。

因为他们使用到很多的python库文件,为了避免一个个工具的安装,建议使用pythonxypytesser是OCR开源项目的一个模块,在Python中导入这个模块即可将图片中的文字转换成文本。

pytesser调用了tesseract。当在Python中调用pytesser模块时,pytesser又用tesseract识别图片中的文字。

pytesser的使用步骤如下:首先,安装Python2.7版本,这个版本比较稳定,建议使用这个版本。其次,安装pythoncv。然后,安装PIL工具,pytesser的使用需要PIL库的支持。

接着下载pytesser最后,将pytesser解压,这个是免安装的,可以将解压后的文件cut到Python安装目录的Lib\site-packages下直接使用,比如我的安装目录是:C:\Python27\Lib\site-packages,同时把这个目录添加到环境变量之中。

完成以上步骤之后,就可以编写图片文本识别的Python脚本了。

参考脚本如下:frompytesserimport*importImageEnhanceimage=('D:\\workspace\\python\\5.png')#使用ImageEnhance可以增强图片的识别率enhancer=ImageEnhance.Contrast(image)image_enhancer=enhancer.enhance(4)printimage_to_string(image_enhancer)tesseract是谷歌的一个对图片进行识别的开源框架,免费使用,现在已经支持中文,而且识别率非常高,这里简要来个helloworld级别的认识下载之后进行安装,不再演示。

在tesseract目录下,有个文件,主要调用这个执行文件,用cmd运行到这个目录下,在这个目录下同时放置一张需要识别的图片,这里是然后运行:tesseractresult会把自动识别并转换为txt文件到但是此时中文识别不好然后找到tessdata目录,把eng.traineddata替换为chi_sim.traineddata,并且把chi_sim.traineddata重命名为eng.traineddataok,现在中文识别基本达到90%以上了。

如何用Python和深度神经网络寻找相似图像

爱发猫 www.aifamao.com

代码首先,读入TuriCreate软件包importturicreateastc我们指定图像所在的文件夹image,让TuriCreate读取所有的图像文件,并且存储到data数据框data=tc.image_analysis.load_images('./image/')我们来看看,data数据框的内容:datadata包含两列信息,第一列是图片的地址,第二列是图片的长宽描述。

下面我们要求TuriCreate给数据框中每一行添加一个行号。这将作为图片的标记,方便后面查找图片时使用,并输出查看data。

data=data.add_row_number()data下面,是重头戏。我们让TuriCreate根据输入的图片集合,建立图像相似度判别模型。

model=tc.image_similarity.create(data)这个语句执行起来,可能需要一些时间。如果你是第一次使用TuriCreate,它可能还需要从网上下载一些数据。请耐心等待。

经过或长或短的等待,模型已经成功建立。下面,我们来尝试给模型一张图片,让TuriCreate帮我们从目前的图片集合里,挑出最为相似的10张来。为了方便,我们就选择第一张图片作为查询输入。

我们利用show()函数展示一下这张图片。tc.Image(data[0]['path']).show()下面我们来查询,我们让模型寻找出与这张图片最相似的10张。

similar_images=model.query(data[0:1],k=10)我们把结果存储在了similar_images变量里面,下面我们来看看其中都有哪些图片。

similar_images返回的结果一共有10行。跟我们的要求一致。每一行数据,包含4列。

分别是:查询图片的标记获得结果的标记结果图片与查询图片的距离结果图片与查询图片近似程度排序值有了这些信息,我们就可以查看到底哪些图片与输入查询图片最为相似了。

注意其中的第一张结果图片,其实就是我们的输入图片本身。考虑它没有意义。我们提取全部结果图片的标记(索引)值,忽略掉第一张(自身)。

similar_image_index=similar_images['reference_label'][1:]把上面9张图片的标记在所有图片的索引列表中过滤出来:filtered_index=data['id'].apply(lambdax:xinsimilar_image_index)filtered_index验证完毕以后,请执行以下语句。

我们再次调用TuriCreate的explore()函数,展现相似度查询结果图片。data[filtered_index].explore()。

如何用python 自己写一个ocr

您好,自己实现OCR的话您需要学习模式识别/机器学习相关知识以及计算机视觉的部分知识。

首先需要定位文本区域,阈值化,切割为单字符,最难的部分是字符的识别,如果识别的文本是规范的,可以考虑用匹配滤波器(不推荐,但简单),或向量空间搜索,正规的方式还是推荐使用机器学习中神经网络的卷积神经网络(CNN)来训练和识别。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值