卷积神经网络结构图绘制,卷积神经网络图怎么画

本文介绍了如何使用Visio绘制卷积神经网络(CNN)结构图,并讨论了如何在TensorFlow和PyTorch中实现CNN。此外,提到了用C++在MNIST数据集上构建简单CNN的资源,以及形色App可能使用的CNN模型。内容涵盖了从图像处理到递归神经网络(RNN)的基本概念和实现。
摘要由CSDN通过智能技术生成

如何用visio画卷积神经网络图。图形类似下图所示

大概试了一下用visio绘制这个图,除了最左面的变形图片外其余基本可以实现(那个图可以考虑用其它图像处理软件比如Photoshop生成后插入visio),visio中主要用到的图形可以在更多形状-常规-具有透视效果的块中找到块图形,拖入绘图区后拉动透视角度调节的小红点进行调整直到合适为止,其余的块可以按住ctrl+鼠标左键进行拉动复制,然后再进行大小、位置仔细调整就可以了,大致绘出图形示例如下图所示:

谷歌人工智能写作项目:小发猫

如何使用TensorFlow实现卷积神经网络

没有卷积神经网络的说法,只有卷积核的说法rfid。电脑图像处理的真正价值在于:一旦图像存储在电脑上,就可以对图像进行各种有效的处理。

如减小像素的颜色值,可以解决曝光过度的问题,模糊的图像也可以进行锐化处理,清晰的图像可以使用模糊处理模拟摄像机滤色镜产生的柔和效果。用Photoshop等图像处理软件,施展的魔法几乎是无止境的。

四种基本图像处理效果是模糊、锐化、浮雕和水彩。ß这些效果是不难实现的,它们的奥妙部分是一个称为卷积核的小矩阵。这个3*3的核含有九个系数。

为了变换图像中的一个像素,首先用卷积核中心的系数乘以这个像素值,再用卷积核中其它八个系数分别乘以像素周围的八个像素,最后把这九个乘积相加,结果作为这个像素的值。

对图像中的每个像素都重复这一过程,对图像进行了过滤。采用不同的卷积核,就可以得到不同的处理效果。ß用PhotoshopCS6,可以很方便地对图像进行处理。

模糊处理——模糊的卷积核由一组系数构成,每个系数都小于1,但它们的和恰好等于1,每个像素都吸收了周围像素的颜色,每个像素的颜色分散给了它周围的像素,最后得到的图像中,一些刺目的边缘变得柔和。

锐化卷积核中心的系数大于1,周围八个系数和的绝对值比中间系数小1,这将扩大一个像素与之周围像素颜色之间的差异,最后得到的图像比原来的图像更清晰。

浮雕卷积核中的系数累加和等于零,背景像素的值为零,非背景像素的值为非零值。照片上的图案好像金属表面的浮雕一样,轮廓似乎凸出于其表面。

要进行水彩处理,首先要对图像中的色彩进行平滑处理,把每个像素的颜色值和它周围的二十四个相邻的像素颜色值放在一个表中,然后由小到大排序,把表中间的一个颜色值作为这个像素的颜色值。

然后用锐化卷积核对图像中的每个像素进行处理,以使得轮廓更加突出,最后得到的图像很像一幅水彩画。我们把一些图像处理技术结合起来使用,就能产生一些不常见的光学效果,例如光晕等等。希望我能帮助你解疑释惑。

如何用PyTorch实现递归神经网络

从Siri到谷歌翻译,深度神经网络已经在机器理解自然语言方面取得了巨大突破。

这些模型大多数将语言视为单调的单词或字符序列,并使用一种称为循环神经网络(recurrentneuralnetwork/RNN)的模型来处理该序列。

但是许多语言学家认为语言最好被理解为具有树形结构的层次化词组,一种被称为递归神经网络(recursiveneuralnetwork)的深度学习模型考虑到了这种结构,这方面已经有大量的研究。

虽然这些模型非常难以实现且效率很低,但是一个全新的深度学习框架PyTorch能使它们和其它复杂的自然语言处理模型变得更加容易。

虽然递归神经网络很好地显示了PyTorch的灵活性,但它也广泛支持其它的各种深度学习框架,特别的是,它能够对计算机视觉(computervision)计算提供强大的支撑。

PyTorch是FacebookAIResearch和其它几个实验室的开发人员的成果,该框架结合了Torch7高效灵活的GPU加速后端库与直观的Python前端,它的特点是快速成形、代码可读和支持最广泛的深度学习模型。

开始SPINN链接中的文章()详细介绍了一个递归神经网络的PyTorch实现,它具有一个循环跟踪器(recurrenttracker)和TreeLSTM节点,也称为SPINN——SPINN是深度学习模型用于自然语言处理的一个例子ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值