神经网络训练算法的调用,神经网络中的矩阵运算

1、如何理解神经网络里面的反向传播算法

反向传播算法(Backpropagation)是目前用来训练人工神经网络(Artificial Neural Network,ANN)的最常用且最有效的算法。其主要思想是:
(1)将训练集数据输入到ANN的输入层,经过隐藏层,最后达到输出层并输出结果,这是ANN的前向传播过程;
(2)由于ANN的输出结果与实际结果有误差,则计算估计值与实际值之间的误差,并将该误差从输出层向隐藏层反向传播,直至传播到输入层;
(3)在反向传播的过程中,根据误差调整各种参数的值;不断迭代上述过程,直至收敛。
反向传播算法的思想比较容易理解,但具体的公式则要一步步推导,因此本文着重介绍公式的推导过程。
1. 变量定义
上图是一个三层人工神经网络,layer1至layer3分别是输入层、隐藏层和输出层。如图,先定义一些变量:
表示第层的第个神经元连接到第层的第个神经元的权重;
表示第层的第个神经元的偏置;
表示第层的第个神经元的输入,即:
表示第层的第个神经元的输出,即:
其中表示激活函数。
2. 代价函数
代价函数被用来计算ANN输出值与实际值之间的误差。常用的代价函数是二次代价函数(Quadratic cost function):
其中,表示输入的样本,表示实际的分类,表示预测的输出,表示神经网络的最大层数。
3. 公式及其推导
本节将介绍反向传播算法用到的4个公式,并进行推导。如果不想了解公式推导过程,请直接看第4节的算法步骤。
首先,将第层第个神经元中产生的错误(即实际值与预测值之间的误差)定义为:
本文将以一个输入样本为例进行说明,此时代价函数表示为:
公式1(计算最后一层神经网络产生的错误):
其中,表示Hadamard乘积,用于矩阵或向量之间点对点的乘法运算。公式1的推导过程如下:
公式2(由后往前,计算每一层神经网络产生的错误):
推导过程:
公式3(计算权重的梯度):
推导过程:
公式4(计算偏置的梯度):
推导过程:
4. 反向传播算法伪代码
输入训练集
对于训练集中的每个样本x,设置输入层(Input layer)对应的激活值:
前向传播:

计算输出层产生的错误:
反向传播错误:

谷歌人工智能写作项目:小发猫

2、我现在在做RBF神经网络k-means算法与RLS递归二乘法结合训练,求哪位大神能给个RLS的算法的MTALAB程序 20

直接用广义RBF网络我感觉比较方便,而且可以直接用newgrnn(P,T,spread)函数神经网络训练乘法运算

RLS算法的MATLAB程序在附件,你可以参考下。

最小二乘大约是1795年高斯在他那星体运动轨道预报工作中提出的[1]。后来,最小二乘法就成了估计理论的奠基石。由于最小二乘法结构简单,编制程序也不困难,所以它颇受人们重视,应用相当广泛。
如用标准符号,最小二乘估计可被表示为:
AX=B (2-43)
上式中的解是最小化 ,通过下式中的伪逆可求得:
A'AX=A'B (2-44)
(A'A)^(-1)A'AX=

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
下面是一个简单的 Python 实现 BP 神经网络预测的示例代码,该代码使用 NumPy 库进行矩阵运算: ```python import numpy as np class NeuralNetwork: def __init__(self, input_dim, hidden_dim, output_dim): self.input_dim = input_dim self.hidden_dim = hidden_dim self.output_dim = output_dim self.weights1 = np.random.randn(self.input_dim, self.hidden_dim) self.weights2 = np.random.randn(self.hidden_dim, self.output_dim) def sigmoid(self, x): return 1 / (1 + np.exp(-x)) def sigmoid_derivative(self, x): return x * (1 - x) def forward(self, X): self.hidden_layer = self.sigmoid(np.dot(X, self.weights1)) self.output_layer = self.sigmoid(np.dot(self.hidden_layer, self.weights2)) def backward(self, X, y, learning_rate): output_error = y - self.output_layer output_delta = output_error * self.sigmoid_derivative(self.output_layer) hidden_error = np.dot(output_delta, self.weights2.T) hidden_delta = hidden_error * self.sigmoid_derivative(self.hidden_layer) self.weights2 += learning_rate * np.dot(self.hidden_layer.T, output_delta) self.weights1 += learning_rate * np.dot(X.T, hidden_delta) def train(self, X, y, epochs, learning_rate): for epoch in range(epochs): self.forward(X) self.backward(X, y, learning_rate) def predict(self, X): self.forward(X) return self.output_layer ``` 在上述代码,我们首先定义了一个 `NeuralNetwork` 类,它包含了神经网络的结构和方法。在 `__init__` 方法,我们随机初始化了两个权重矩阵 `weights1` 和 `weights2`,其形状分别为 `(input_dim, hidden_dim)` 和 `(hidden_dim, output_dim)`。 在 `sigmoid` 方法,我们使用 Sigmoid 函数计算激活值;在 `sigmoid_derivative` 方法,我们计算了 Sigmoid 函数的导数。 在 `forward` 方法,我们首先计算了输入层到隐藏层的加权和,并使用 Sigmoid 函数计算激活值;然后计算了隐藏层到输出层的加权和,并使用 Sigmoid 函数计算输出层的激活值。 在 `backward` 方法,我们首先计算了输出层的误差和误差项,然后使用反向传播算法计算了隐藏层的误差和误差项,并更新了权重矩阵。 在 `train` 方法,我们使用梯度下降算法进行训练,即通过多次迭代更新权重矩阵,使得神经网络的输出逐渐接近真实值。 最后,在 `predict` 方法,我们只需要调用 `forward` 方法计算输出层的激活值即可预测结果。 下面是使用该类进行 BP 神经网络预测的示例代码: ```python # 构造训练数据 X = np.array([[0, 0], [0, 1], [1, 0], [1, 1]]) y = np.array([[0], [1], [1], [0]]) # 创建神经网络 nn = NeuralNetwork(input_dim=2, hidden_dim=4, output_dim=1) # 训练神经网络 nn.train(X, y, epochs=10000, learning_rate=0.1) # 预测结果 print(nn.predict(np.array([[0, 0], [0, 1], [1, 0], [1, 1]]))) ``` 在上述代码,我们首先构造了一个 XOR 问题的数据集,包含了输入数据 `X` 和输出数据 `y`。然后创建了一个 `NeuralNetwork` 对象,并使用 `train` 方法训练神经网络。最后使用 `predict` 方法预测了结果,并输出了预测值。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值