1005: 三个袋子
时间限制: 1 Sec 内存限制: 64 MB
题目描述
平平在公园里游玩时捡到了很多小球,而且每个球都不一样。平平找遍了全身只发现了3个一模一样的袋子。他打算把这些小球都装进袋子里(袋子可以为空)。他想知道他总共有多少种放法。 将N个不同的球放到3个相同的袋子里,求放球的方案总数M。 结果可能很大,我们仅要求输出M mod K的结果。 现在,平平已经统计出了N<=10的所有情况。见下表:
N 1 2 3 4 5 6 7 8 9 10
M 1 2 5 14 41 122 365 1094 3281 9842
输入
两个整数N,K,N表示球的个数。
输出
输出仅包括一行,一个整数M mod K 。
样例输入
11 10000
样例输出
9525
提示
数据规模 对于 40%数据,10<=N<=10,000 对于100%数据,10<=N<=1,000,000,000 对于 100%数据,K<=100,000
解题报告
手推了前几项发现就是算f(n)=3f(n-1)-1
然后觉得是矩阵加速裸提
然后就无脑写了矩阵加速= =
#include<cstdio>
#include<cstring>
typedef long long LL;
LL mat_mod;
const int MAT_SIZE=4;
struct Matrix{
int x,y;
LL mat[MAT_SIZE][MAT_SIZE];
Matrix(){x=y=0;memset(mat,0,sizeof mat);}
void singlelize(){
if(x!=y)puts("Error");
memset(mat,0,sizeof mat);
for(int i=1;i<=x;i++)
mat[i][i]=1;
}
void print(){
for(int i=1;i<=x;i++){
for(int j=1;j<=y;j++)
printf("%5d",mat[i][j]);
putchar('\n');
}
}
};
Matrix operator*(const Matrix&a,const Matrix&b){
if(a.y!=b.x)return *((Matrix*)0);
Matrix ret;
for(int i=1;i<=a.x;i++)
for(int j=1;j<=b.y;j++)
for(int k=1;k<=a.y;k++){
ret.mat[i][j]+=(a.mat[i][k]*b.mat[k][j])%mat_mod;
ret.mat[i][j]%=mat_mod;
}
ret.x=a.x;
ret.y=b.y;
return ret;
}
Matrix tmp;
Matrix adv_pow(Matrix a,LL b,LL c){
mat_mod=c;
//printf("%I64d\n",matrix::mod);
tmp=a;
tmp.singlelize();
while(b){
//printf("mtp");
if(b&1)tmp=tmp*a;
a=a*a;
b>>=1;
}
return tmp;
}
int main(){
LL n,k;
scanf("%I64d%I64d",&n,&k);
Matrix p;
p.mat[1][1]=1;
p.mat[1][2]=1;
p.mat[2][2]=3;
p.x=p.y=2;
Matrix vec;
vec.mat[1][1]=-1;
vec.mat[1][2]=1;
vec.x=1;
vec.y=2;
Matrix mul=adv_pow(p,n-1,k);
//mul.print();
//vec.print();
vec=vec*mul;
//puts("after");
//vec.print();
LL ans=vec.mat[1][2];
if(ans<0)ans+=mat_mod;
printf("%I64d\n",ans);
}
结果发现可以快速幂解决= =