1、背景
在概率论和统计学中,二项分布是n个独立的[是/非]试验中成功的次数的离散概率分布,其中每次试验的成功概率为p。举两个例子就很容易理解二项分布的含义了:
-
抛一次硬币出现正面的概率是0.5(p),抛10(n)次硬币,出现k次正面的概率。
-
掷一次骰子出现六点的概率是1/6,投掷6次骰子出现k次六点的概率。
在上面的两个例子中,每次抛硬币或者掷骰子都和上次的结果无关,所以每次实验都是独立的。二项分布是一个离散分布,k的取值范围为从0到n,只有n+1种可能的结果。
2、python 代码
import pylab as pl
import numpy as np
from scipy import stats
n=10
k=np.arange(n+1)
pcoin=stats.binom.pmf(k,n,0.5)
pl.stem(k,pcoin,basefmt="k-")
pl.margins(0.1)
3、相关数据结果和效果图
数据:
效果图: