FHE学习笔记 #1 部分抽象代数名词

参考教材:

邓少强,朱富海:《抽象代数》,北京,科学出版社,2017 年

文章使用 wolai 编写并导出,在 wolai 中观看效果更好,有颜色高亮和实时更新

  • 群 Group

    对于非空集合 G G G ∘ \circ 是它的一个代数运算,如果满足以下条件:

    • 结合律成立,即对 G G G 中任意元素 a , b , c a, b, c a,b,c 都有

      ( a ∘ b ) ∘ c = a ∘ ( b ∘ c ) (a \circ b) \circ c=a \circ(b \circ c) (ab)c=a(bc)

    • G G G 中有元素 e e e,叫做 G G G左单位元,它对 G G G 中每个元素 a a a 都有

      e ∘ a = a e \circ a=a ea=a

    • G G G 中每个元素 a a a,在 G G G 中都有元素 a − 1 a^{-1} a1,叫做 a a a左逆元 (Inverse),使

      a − 1 ∘ a = e a^{-1} \circ a=e a1a=e

    则称 G G G 对代数运算 ∘ \circ 作成一个

    群是一个满足封闭性、满足结合律、有单位元、有逆元的二元运算的代数结构。

    单位元,也叫幺元,英文 Identity Element。

  • 半群 Semi-group

    S S S 是一个非空集合,如果它有一个代数运算满足结合律,则称 S S S 是一个半群。

  • 子群

    • H H H 是群 G G G 的一个非空子集,如果 H H H 对于 G G G 的运算也构成群,则称 H H H G G G 的子群,记作 H < G H<G H<G

    • m ∈ N m \in \mathbb{N} mN,则 m Z = { m n ∣ n ∈ Z } m \mathbb{Z}=\{m n \mid n \in \mathbb{Z}\} mZ={ mnnZ} Z \mathbb{Z} Z 的子群

    • Z \mathbb{Z} Z 的任何子群都形如 m Z , m ∈ N m \mathbb{Z}, m \in \mathbb{N} mZ,mN.

    G G G 为群, a ∈ G a \in G aG,记 a 0 = e a^0=e a0=e

    • k ∈ N k \in \mathbb{N} kN,令 a k = a ⋅ a k − 1 , a − k = ( a − 1 ) k a^k=a \cdot a^{k-1},a^{-k}=\left(a^{-1}\right)^k ak=aak1,ak=(a1)k

    • 对 加法群 G G G a n a^n an 通常记为 n a n a na

    • ⟨ a ⟩ = { a n ∣ n ∈ Z } \langle a\rangle=\left\{a^n \mid n \in \mathbb{Z}\right\} a={ annZ} G G G 的子群,称为 a a a 生成的子群,子群的阶也称为 a a a 的阶

    更一般地,设 S S

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ailanxier

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值