FHE学习笔记 #1 部分抽象代数名词

参考教材:

邓少强,朱富海:《抽象代数》,北京,科学出版社,2017 年

文章使用 wolai 编写并导出,在 wolai 中观看效果更好,有颜色高亮和实时更新

  • 群 Group

    对于非空集合 G G G ∘ \circ 是它的一个代数运算,如果满足以下条件:

    • 结合律成立,即对 G G G 中任意元素 a , b , c a, b, c a,b,c 都有

      ( a ∘ b ) ∘ c = a ∘ ( b ∘ c ) (a \circ b) \circ c=a \circ(b \circ c) (ab)c=a(bc)

    • G G G 中有元素 e e e,叫做 G G G左单位元,它对 G G G 中每个元素 a a a 都有

      e ∘ a = a e \circ a=a ea=a

    • G G G 中每个元素 a a a,在 G G G 中都有元素 a − 1 a^{-1} a1,叫做 a a a左逆元 (Inverse),使

      a − 1 ∘ a = e a^{-1} \circ a=e a1a=e

    则称 G G G 对代数运算 ∘ \circ 作成一个

    群是一个满足封闭性、满足结合律、有单位元、有逆元的二元运算的代数结构。

    单位元,也叫幺元,英文 Identity Element。

  • 半群 Semi-group

    S S S 是一个非空集合,如果它有一个代数运算满足结合律,则称 S S S 是一个半群。

  • 子群

    • H H H 是群 G G G 的一个非空子集,如果 H H H 对于 G G G 的运算也构成群,则称 H H H G G G 的子群,记作 H < G H<G H<G

    • m ∈ N m \in \mathbb{N} mN,则 m Z = { m n ∣ n ∈ Z } m \mathbb{Z}=\{m n \mid n \in \mathbb{Z}\} mZ={mnnZ} Z \mathbb{Z} Z 的子群

    • Z \mathbb{Z} Z 的任何子群都形如 m Z , m ∈ N m \mathbb{Z}, m \in \mathbb{N} mZ,mN.

    G G G 为群, a ∈ G a \in G aG,记 a 0 = e a^0=e a0=e

    • k ∈ N k \in \mathbb{N} kN,令 a k = a ⋅ a k − 1 , a − k = ( a − 1 ) k a^k=a \cdot a^{k-1},a^{-k}=\left(a^{-1}\right)^k ak=aak1,ak=(a1)k

    • 对 加法群 G G G a n a^n an 通常记为 n a n a na

    • ⟨ a ⟩ = { a n ∣ n ∈ Z } \langle a\rangle=\left\{a^n \mid n \in \mathbb{Z}\right\} a={annZ} G G G 的子群,称为 a a a 生成的子群,子群的阶也称为 a a a 的阶

    更一般地,设 S S S 是群 G G G 中一个非空子集,令 S − 1 = { a − 1 ∣ a ∈ S } S^{-1}=\left\{a^{-1} \mid a \in S\right\} S1={a1aS},记

    ⟨ S ⟩ = { x 1 , … , x m ∣ m ∈ N , x 1 , … , x m ∈ S ∪ S − 1 } \langle S\rangle=\{x_1, \ldots ,x_m \mid m \in \mathbb{N}, x_1, \ldots, x_m \in S \cup S^{-1}\} S={x1,,xmmN,x1,,xmSS1}

    ⟨ S ⟩ \langle S\rangle S G G G 的一个子群,称为 S S S 生成的子群。

  • 陪集 Coset

    H H H 是群 G G G 的一个子群, a ∈ G a \in G aG。则称群 G G G 的子集

    a H = { a x ∣ x ∈ H } a H=\{a x \mid x \in H\} aH={axxH}

    为群 G G G 关于子群 H H H 的一个左陪集。而称

    H a = { x a ∣ x ∈ H } H a=\{x a \mid x \in H\} Ha={xaxH}

    为群 G G G 关于子群 H H H 的一个右陪集。

    以上叙述中都把群 G G G 中的运算记作乘法,并且省去了运算符。

    如果群 G G G 中的运算记作加法,则以 a a a 为代表的左陪集应该记作

    a + H = { a + h ∣ h ∈ H } a+H=\{a+h|h\in H\} a+H={a+hhH}

  • 同余类 Congruence Class(或剩余类 Residue Class)

    Modular arithmetic - Wikipedia

    • m m m 同余是一个等价关系,由此确定了整数上的一个分类

    • 对于 ∀ a ∈ [ 0 , m − 1 ] \forall a\in [0,m-1] a[0,m1],集合 a + m Z a+m\mathbb{Z} a+mZ 中的所有数模 m m m 同余,这个集合叫做 a a a 的等价类,也叫同余类,记作 [ a ]    or    a ‾ m [a]\;\text{or}\;\overline{a}_m [a]oram

    • 满足:

      Z = ( 0 + m Z ) ∪ ( 1 + m Z ) ∪ ⋯ ∪ ( ( m − 1 ) + m Z ) = { 0 ‾ + 1 ‾ + ⋯ + m − 1 ‾ } \mathbb{Z}=(0+m \mathbb{Z}) \cup(1+m \mathbb{Z}) \cup \cdots \cup((m-1)+m \mathbb{Z})=\{\overline0+\overline1+\cdots+\overline {m-1} \} Z=(0+mZ)(1+mZ)((m1)+mZ)={0+1++m1}

  • 最小剩余系(Residue Systems)

    每个等价类通常用他们的最小非负元素来表示,这些最小代表的集合就是模 m m m所得的余数域,也叫最小的剩余系 Z m = { 0 , 1 , ⋯   , m − 1 } \mathbb{Z}_m=\{0,1,\cdots,m-1\} Zm={0,1,,m1}

  • 商集 Equivalence Set

    商集是集合的一个划分,设 ∼ \sim 为集合 S S S 的一个等价关系,则 S / ∼ S/\sim S/ 称为商集,是等价类构成的集合。

  • 正规子群 Normal Subgroup 和商群 Quotient Group

    Quotient group - Wikipedia

    • H H H 是群 G G G 的一个子群,如果 ∀ a ∈ G ,   a H = H a \forall a\in G,~aH=Ha aG, aH=Ha,则称 H H H G G G 上的正规子群,记作 H ⊲ G H\lhd G HG

    • H H H 是群 G G G 的一个正规子群,定义 G / H = { a H ∣ a ∈ G } G/H=\{aH|a\in G\} G/H={aHaG},对于陪集乘法

      ( a H ) ( b H ) = a ( H b ) H = ( a b ) H H = a b H (aH)(bH)=a(Hb)H=(ab)HH=abH (aH)(bH)=a(Hb)H=(ab)HH=abH

      构成一个陪集为元素的群,叫做商群

    • 由于 { Z ; + } \{\mathbb{Z} ;+\} {Z;+} 是交换群,故其任一子群 m Z m \mathbb{Z} mZ Z \mathbb{Z} Z 的正规子群,所以有商群:

      Z / m Z = { Z , m = 0 { 0 ‾ , 1 ‾ , … , m − 1 ‾ } , m ≠ 0 m Z = 0 ‾ a ‾ = a + m Z = a ∘ m Z \begin{aligned}&\mathbb{Z} / m \mathbb{Z}= \begin{cases}\mathbb{Z}, & m=0 \\ \{\overline{0}, \overline{1}, \ldots, \overline{m-1}\}, & m \neq 0\end{cases}\\ &m\mathbb{Z}=\overline 0\\ &\overline a=a+m\mathbb{Z}=a\circ m\mathbb{Z} \end{aligned} Z/mZ={Z,{0,1,,m1},m=0m=0mZ=0a=a+mZ=amZ

      注意商群元素之间的运算为模 m m m 加法,这个群通常简记为 Z m \mathbb{Z}_m Zm(但是这个记号容易弄混),称为模 m m m 的剩余类加群。

    • 当商群元素间的运算为模 m m m 乘法,这个商群记为 ( Z / m Z ) × (\mathbb{Z} / m \mathbb{Z})^\times (Z/mZ)×,不同于加群,这个群的大小为欧拉函数 φ ( m ) \varphi(m) φ(m)(英文:Euler’s totient Function),即集合 { 1 , ⋯   , m − 1 } \{1,\cdots,m-1\} {1,,m1} 中与 m m m 互质的数的个数,则

      ( Z / m Z ) × = { p ‾ ∣   p ‾ ∈ ( Z / m Z ) + , gcd ⁡ ( p , m ) = 1 } , m ≠ 0 1 ‾ is the identity a ‾ × b ‾ = a × b ‾ \begin{aligned} &(\mathbb{Z} / m \mathbb{Z})^\times= \{\overline p|~\overline p\in(\mathbb{Z} / m \mathbb{Z})^+,\gcd(p,m)=1\}, m \neq 0\\ &\overline 1 \text{is}~\text{the}~\text{identity}\\ &\overline a\times \overline b=\overline{a\times b} \end{aligned} (Z/mZ)×={p p(Z/mZ)+,gcd(p,m)=1},m=01is the identitya×b=a×b

      Multiplicative group of integers modulo n - Wikipedia

      http://www.math.columbia.edu/~rf/numbertheory2.pdf

      其中单位元为 1 ‾ \overline 1 1 ,一个元素 a ‾ \overline a a 的最小非负代表数 a a a 的逆元 a − 1 a^{-1} a1 要满足同余方程 a a − 1 ≡ 1 ( m o d   m ) aa^{-1} \equiv 1(\mathrm{mod}~m) aa11(mod m),即方程 a x + m y = 1 ax + my= 1 ax+my=1 要有整数解 x , y x,y x,y

      根据裴蜀(贝祖)定理的推论, 𝑎 , 𝑏 𝑎,𝑏 a,b 互质的充要条件是存在整数 𝑥 , 𝑦 𝑥,𝑦 x,y 使 𝑎 𝑥 + 𝑏 𝑦 = 1 𝑎𝑥+𝑏𝑦=1 ax+by=1,所以 Z m × \mathbb{Z}_m^\times Zm× 中的最小非负代表数都是和 m m m 互质的数,否则没有逆元。

  • 环 Ring

    设非空集合 R R R 有两个代数运算,一个叫做加法(一般用 + + + 表示),另一个叫做乘法。如果:

    • R R R 对加法作成一个交换群

    • R R R 对乘法满足结合律(即半群)

    • 乘法对加法满足左右分配律

      ∀ a , b , c ∈ R , a ( b + c ) = a b + a c , ( b + c ) a = b a + c a \forall a,b,c\in R,\quad a(b+c)=a b+a c, \quad(b+c) a=b a+c a a,b,cR,a(b+c)=ab+ac,(b+c)a=ba+ca

    则称 R R R 对这两个代数运算作成一个环。

    若对乘法满足交换律,则称为可换环 Commutative Ring

    若乘法有单位元,则称为幺环

  • 理想 Ideal

    Ideal (ring theory) - Wikipedia

    • R R R 为环, I I I R R R 的子环,如果 I I I 满足条件「 a ∈ I , x ∈ R ⇒ x a ∈ I a \in I, x \in R \Rightarrow x a \in I aI,xRxaI」,则称 I I I R R R 的左理想

    • 如果 I I I 满足条件「 a ∈ I , y ∈ R ⇒ a y ∈ I a \in I, y \in R \Rightarrow a y \in I aI,yRayI」,则称 I I I R R R 的右理想

    • 若一个子环既是左理想,又是右理想,则称为双边理想 Two-sided Ideal

  • 主理想 Principal Ideal

    Principal ideal - Wikipedia

    • 主理想是环 R R R 的一个由单个元素 a a a 生成的理想 I I I,分为左/右/双边主理想

    • 左主理想严谨表示为(右类似):

      I = R a = { r a ∣ r ∈ R } I=Ra=\{ra|r\in R\} I=Ra={rarR}

    • 双边主理想严谨表示为(没太看懂,国内博客好像不太一致):

      I = R a R = { r 1 a s 1 + ⋯ + r n a s n ∣ r 1 , s 1 , … , r n , s n ∈ R } I=R a R=\left\{r_{1} a s_{1}+\cdots+r_{n} a s_{n}| r_{1}, s_{1}, \ldots, r_{n}, s_{n} \in R\right\} I=RaR={r1as1++rnasnr1,s1,,rn,snR}

    • 对于可换环,以上三种主理想是一样的,可以记由 a a a 生成的环为 I = ⟨ a ⟩    or    I = ( a ) I=\langle a\rangle\; \text{or} \;I=(a) I=aorI=(a)

    Z \mathbb{Z} Z 的主理想就是 ⟨ m ⟩ = m Z \langle m \rangle = m\mathbb{Z} m=mZ

  • 商环 Quotient Ring(或剩余类环 Residue Class Ring)

    Quotient ring - Wikipedia

    R R R 是一个环, I I I R R R 的理想。考虑加法群 { R ; + } \{R ;+\} {R;+} 对于子群 I I I 的商群 R / I R / I R/I,将 a ∈ R a \in R aR 所在的等价类记为 a + I a+I a+I。在 R / I R / I R/I 上定义乘法如下:

    ( a + I ) ( b + I ) = a b + I . (a+I)(b+I)=a b+I . (a+I)(b+I)=ab+I.

    则集合 R / I R / I R/I 对于商群的加法以及上述乘法运算构成一个环,称为 R R R 对于理想 I I I 的商环。

    Z / m Z \mathbb{Z}/m\mathbb{Z} Z/mZ 就是一个商环,当 m > 0 m>0 m>0 时,称 Z / m Z \mathbb{Z}/m\mathbb{Z} Z/mZ Z \mathbb{Z} Z m m m 的剩余类环。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ailanxier

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值