参考教材:
邓少强,朱富海:《抽象代数》,北京,科学出版社,2017 年
文章使用 wolai 编写并导出,在 wolai 中观看效果更好,有颜色高亮和实时更新
-
群 Group
对于非空集合 G G G, ∘ \circ ∘ 是它的一个代数运算,如果满足以下条件:
-
结合律成立,即对 G G G 中任意元素 a , b , c a, b, c a,b,c 都有
( a ∘ b ) ∘ c = a ∘ ( b ∘ c ) (a \circ b) \circ c=a \circ(b \circ c) (a∘b)∘c=a∘(b∘c)
-
G G G 中有元素 e e e,叫做 G G G 的左单位元,它对 G G G 中每个元素 a a a 都有
e ∘ a = a e \circ a=a e∘a=a
-
对 G G G 中每个元素 a a a,在 G G G 中都有元素 a − 1 a^{-1} a−1,叫做 a a a 的左逆元 (Inverse),使
a − 1 ∘ a = e a^{-1} \circ a=e a−1∘a=e
则称 G G G 对代数运算 ∘ \circ ∘ 作成一个群。
群是一个满足封闭性、满足结合律、有单位元、有逆元的二元运算的代数结构。
单位元,也叫幺元,英文 Identity Element。
-
-
半群 Semi-group
设 S S S 是一个非空集合,如果它有一个代数运算满足结合律,则称 S S S 是一个半群。
-
子群
-
设 H H H 是群 G G G 的一个非空子集,如果 H H H 对于 G G G 的运算也构成群,则称 H H H 为 G G G 的子群,记作 H < G H<G H<G
-
设 m ∈ N m \in \mathbb{N} m∈N,则 m Z = { m n ∣ n ∈ Z } m \mathbb{Z}=\{m n \mid n \in \mathbb{Z}\} mZ={ mn∣n∈Z} 是 Z \mathbb{Z} Z 的子群
-
Z \mathbb{Z} Z 的任何子群都形如 m Z , m ∈ N m \mathbb{Z}, m \in \mathbb{N} mZ,m∈N.
设 G G G 为群, a ∈ G a \in G a∈G,记 a 0 = e a^0=e a0=e
-
对 k ∈ N k \in \mathbb{N} k∈N,令 a k = a ⋅ a k − 1 , a − k = ( a − 1 ) k a^k=a \cdot a^{k-1},a^{-k}=\left(a^{-1}\right)^k ak=a⋅ak−1,a−k=(a−1)k
-
对 加法群 G G G, a n a^n an 通常记为 n a n a na
-
⟨ a ⟩ = { a n ∣ n ∈ Z } \langle a\rangle=\left\{a^n \mid n \in \mathbb{Z}\right\} ⟨a⟩={ an∣n∈Z} 是 G G G 的子群,称为 a a a 生成的子群,子群的阶也称为 a a a 的阶
更一般地,设 S S
-