文章使用 wolai 编写并导出,在 wolai 中观看效果更好,有颜色高亮和实时更新
不可约多项式 Irreducible Polynomial
定义比较多,通俗来说,不可约多项式首先是「非常数多项式 Non-constant Polynomial」,且不能被分解成两个「非常数多项式」乘积的形式。
如果能分解为仅含常数项的多项式,那用单位元 1 \bf 1 1 就能无限分解了,显然不合理。
更严格的定义是要说明在什么域上是不可约的,例如 x 2 − 2 x^2-2 x2−2 在整数域上是不可约的,因为它不能分解成系数为整数的非常数多项式。但是 x 2 − 2 x^2-2 x2−2 在实数域上属于可约多项式,可以分解为 ( x − 2 ) ( x − 2 ) (x-\sqrt 2)(x-\sqrt 2) (x−2)(x−2)。
单位根 Root of Unity
n 次单位根的求法_cyzhou1221的博客-CSDN博客_n次单位根
极其推荐阅读 🔥: 分圆多项式 (yhx-12243.github.io),前置知识有详细讲述单位根和本原单位根的内容
在复数域上, n n n 次单位根是指方程 z n = 1 z^n=1 zn=1 的解, n n n 为正整数,且在复数域内有且只有 n n n 个解。解的形式为
z k = e 2 π i n k = exp ( 2 π i n k ) , k ∈ Z z_k=e^{\frac{2\pi i}{n}k}=\exp\left(\frac{2\pi i}{n}k\right),k\in\mathbb{Z} zk=en2πik=exp(n2πik),k∈Z
证明:
复数的形式为 z = R exp ( i θ ) = R cos θ + i R s i n θ , R > 0 z=R\exp(i\theta)=R\cos\theta+iRsin\theta,R>0 z=Rexp(iθ)=Rcosθ+iRsinθ,R>0
两个复数 z 1 , z 2 z_1,z_2 z1,z2 相等 ⟺ R 1 = R 2 , θ 1 = θ 2 + 2 k π , k ∈ Z \iff~~R_1=R_2,\theta_1=\theta_2+2k\pi,k\in \mathbb{Z} ⟺ R1=R2,θ1=θ2+2kπ,k∈Z
而复数 1 = 1 exp ( i 0 ) , i.e. R = 1 , θ = 0 1=1\exp(i0),\text{i.e.}\;R=1,\theta=0 1=1exp(i0),i.e.R=1,θ=0,代入 z n = 1 z^n=1 zn=1 得到:
R n = 1 , n θ = 2 k π + 0 , R ≥ 0 , k ∈ Z R^n=1,n\theta=2k\pi+0,R\ge0,k\in \mathbb{Z} Rn=1,nθ=2kπ+0,R≥0,k∈Z
解得 R = 1 , θ = 2 k π n , k ∈ Z \begin{aligned}R=1,\theta=\frac{2k\pi}{n}\end{aligned},k\in\mathbb{Z} R=1,θ=n2kπ,k∈Z,则 z k = exp ( 2 π i n k ) , k ∈ Z \begin{aligned}z_k=\exp\left(\frac{2\pi i}{n}k\right),k\in\mathbb{Z} \end{aligned} zk=exp(n2πik),k∈Z
实际上,只有 k = 0 , 1 , ⋯ , n − 1 k=0,1,\cdots,n-1 k=0,1,⋯,n−1 共 n n n 个不重根,也就是说,在复数域上对 1 开 n n n 次方根的结果有 n n n 个。
设 z = exp ( 2 π i m ) \begin{aligned}z=\exp\left(\frac{2\pi i}{m}\right)\end{aligned} z=exp(m2πi),则这 n n n 个根为 z 0 = 1 , z , z 2 , … , z n − 1 z^0=1,z,z^2,\ldots,z^{n-1} z0=1,z,z2,…,zn−1。
证明:
取 k = n + s , s ∈ Z k=n+s,s\in\mathbb{Z} k=n+s,s∈Z,则
z k = exp ( 2 π i n k ) = exp ( 2 π i n ( n + s ) ) = exp ( 2 π i + 2 π i n s ) = exp ( 2 π i ) × exp ( 2 π i n s ) = ( e π i ) 2 × exp ( 2 π i n s ) = 1 × exp ( 2 π i n s ) = z s \begin{aligned} z_k=\exp\left(\frac{2\pi i}{n}k\right)&=\exp\left(\frac{2\pi i}{n}(n+s)\right)=\exp\left(2\pi i+\frac{2\pi i}{n}s\right) \\&=\exp\left(2\pi i\right)\times\exp\left(\frac{2\pi i}{n}s\right)=(e^{\pi i})^2\times\exp\left(\frac{2\pi i}{n}s\right) \\&=1\times\exp\left(\frac{2\pi i}{n}s\right)=z_s \end{aligned} zk=exp(n2πik)=exp(n2πi(n+s))=exp(2πi+n2πis)=exp(2πi)×exp(n2πis)=(eπi)2×exp(n2πis)=1×exp(n2πis)=zs
这里使用了欧拉公式 e π i + 1 = 0 e^{\pi i}+1=0 eπi+1=0。
可以看出当 k , s k,s k,s 属于同一同余类(模 n n n)时,这两个根是相同的,所以不重根的数目和模 n n n 最小剩余系大小相同,即 n n n。
一些性质:
-
对于任意 n n n,当 k = 0 k=0 k=0 时, z k = 1 z_k=1 zk=1
-
n n n 次单位根的模为 1,在复平面 Complex plane 上等分单位圆,如下图是 n = 5 n=5 n=5 次单位根在复平面上的分布(svg 图片无法显示,建议去 wolai 中观看)
-
n n n 次单位根的任意次幂仍为 n n n 次单位根
证明:
设 z z z 是 n n n 次单位根,则对于 k ∈ Z k\in\mathbb{Z} k∈Z,有
( z k ) n = ( z n ) k = 1 k = 1 (z^k)^n=(z^n)^k=1^k=1 (zk)n=(zn)k=1k=1
-
同理可以证出,任意两个 n n n 次单位根的乘积仍然是 n n n 次单位根
-
由上述性质,可以得到所有 n n n 次单位根可以构成一个乘法交换循环群
-
利用 n n n 个根对 x n − 1 x^n-1 xn−1 进行多项式分解
由 Vieta 定理可以得到:
z = exp ( 2 π i m ) , x n − 1 = ( x − 1 ) ( x − z ) ⋯ ( x − z n − 1 ) z=\exp\left(\frac{2\pi i}{m}\right),x^n-1=(x-1)(x-z)\cdots(x-z^{n-1}) z=exp(m2πi),xn−1=(x−1)(x−z)⋯(x−zn−1)
单位原根 Primitive Roots of Unity
n n n 次单位原根是指 n n n 次单位根中的某些根 z z z,满足 ∀ m ∈ { 1 , 2 , … , n − 1 } , z m ≠ 0 , z n = 1 \forall m\in\{1,2,\ldots,n-1\},z^m\not=0,z^n=1 ∀m∈{ 1,2,…,n−1},zm=0,zn=1。
n n n 次单位根 z k z_k zk 满足 gcd ( n , k ) = 1 \gcd(n,k)=1 gcd(n,k)=1 ⟺ \iff ⟺ n n n 次单位原根。
自己瞎证明的 🥺:
gcd ( n , k ) = 1 \gcd(n,k)=1 gcd(n,k)=1 说明 z k z_k zk 就是 n n n 次单位原根
设 ∀ k ∈ { k ∣ gcd ( n , k ) = 1 } \forall k\in\{k|\gcd(n,k)=1\} ∀k∈{ k∣gcd(n,k)=1}, z k = exp ( 2 k π i n ) \begin{aligned}z_k=\exp\left(\frac{2k\pi i}{n}\right)\end{aligned} zk=exp(n2kπi) ,则
∃ d ∈ N + s.t. z k d = exp ( 2 k d π i n ) = 1 \begin{aligned} \exists d \in\mathbb{N^+}\text{~s.t.~} z_k^d=\exp\left(\frac{2kd\pi i}{n}\right)=1 \end{aligned}