剑指 Offer 47. 礼物的最大价值
在一个 m*n 的棋盘的每一格都放有一个礼物,每个礼物都有一定的价值(价值大于 0)。你可以从棋盘的左上角开始拿格子里的礼物,并每次向右或者向下移动一格、直到到达棋盘的右下角。给定一个棋盘及其上面的礼物的价值,请计算你最多能拿到多少价值的礼物?
示例 1:
输入:
[
[1,3,1],
[1,5,1],
[4,2,1]
]
输出: 12
解释: 路径 1→3→5→2→1 可以拿到最多价值的礼物
提示:
0 < grid.length <= 200
0 < grid[0].length <= 200
核心:动态规划dp
转换方程:dp[i][j]=Math.max(dp[i-1][j]+grid[i][j],dp[i][j-1]+grid[i][j])
class Solution {
public int maxValue(int[][] grid) {
if (grid.length==0){
return 0;
}
//从头开始遍历
for (int i = 0; i < grid.length; i++) {
for (int j = 0; j < grid[0].length; j++) {
if (i == 0 && j == 0) {
continue;
}
//如果上和左都存在值则通过转换方程判断,否则只有一边的情况下值直接相加即可
if (i>0&&j>0){
grid[i][j]=Math.max(grid[i][j]+grid[i-1][j],grid[i][j]+grid[i][j-1]);
}else if (i>0){
grid[i][j]=grid[i][j]+grid[i-1][j];
}else{
grid[i][j]=grid[i][j]+grid[i][j-1];
}
}
}
//礼物价值大于0,因此最大的礼物肯定在最右下
return grid[grid.length-1][grid[0].length-1];
}
}