注:
题目:
在一个 m*n 的棋盘的每一格都放有一个礼物,每个礼物都有一定的价值(价值大于 0)。你可以从棋盘的左上角开始拿格子里的礼物,并每次向右或者向下移动一格、直到到达棋盘的右下角。给定一个棋盘及其上面的礼物的价值,请计算你最多能拿到多少价值的礼物?
示例 1:
输入:
[
[1,3,1],
[1,5,1],
[4,2,1]
]
输出: 12
解释: 路径 1→3→5→2→1 可以拿到最多价值的礼物
提示:
0 < grid.length <= 200
0 < grid[0].length <= 200
题解:
方法一 普通动态规划
解题思路:
设 f(i, j) 为从棋盘左上角走至单元格 (i,j) 的礼物最大累计价值,易得到以下递推关系:f(i,j) 等于f(i,j−1) 和f(i−1,j) 中的较大值加上当前单元格礼物价值 grid(i,j) 。
f(i,j)=max[f(i,j−1),f(i−1,j)]+grid(i,j)
因此,可用动态规划解决此问题,以上公式便为转移方程。
动态规划解析:
状态定义: 设动态规划矩阵 dp ,dp(i,j) 代表从棋盘的左上角开始,到达单元格 (i,j) 时能拿到礼物的最大累计价值。
转移方程:
当 i=0 且 j = 0 时,为起始元素;
当 i=0 且 j!=0 时,为矩阵第一行元素,只可从左边到达;
当 i !=0 且 j = 0 时,为矩阵第一列元素,只可从上边到达;
当 i !=0 且 j !=0 时,可从左边或上边到达;
初始状态: dp[0][0] = grid[0][0],即到达单元格(0,0) 时能拿到礼物的最大累计价值为grid[0][0] ;
返回值: dp[m-1][n-1],m, n分别为矩阵的行高和列宽,即返回 dp 矩阵右下角元素。
复杂度分析:
时间复杂度 O(MN) : M, N 分别为矩阵行高、列宽;动态规划需遍历整个 grid矩阵,使用 O(MN) 时间。
空间复杂度 O(MN) : dp数组O(MN)大小的额外空间。
class Solution {
public:
int maxValue(vector<vector<int>>& grid) {
int row=grid.size();
int col=grid[0].size();
vector<vector<int>> dp