Gaussian Processes for Regression 阅读笔记

本文概览:

1,作者:M.Ebden;
2,思想来源:对于给定训练数据预测新数据为问题,如果我们假设训练数据是线性的,那么可以用最小二乘法计算训练模型,然而,大多数情况下训练数据是非线性的,此时我们可以假设训练模型是二次的、立方体的,亦或是其他非线性模型,此时我们可以利用模型选择的原理在不同的可能性间做出选择。但是针对非线性问题,高斯处理回归是更好地选择,它可以挖掘数据中更深层的知识,并且其是一种有监督的学习方式,可以微妙的利用训练数据;

高斯处理回归:

1,高斯处理模型是一个参数少的模型,但并非是完全没有参数的自由模型;
2,如果不能对回归函数f(x)做一些基本的假设,那么可以考虑使用别的回归技术;
3,关键假设:我们的数据可以被表达为从多变量的高斯分布中进行采样;
4,GP将多变量高斯分布扩展到无限维空间;
5,一般高斯协方差函数:这里写图片描述
6,带噪声的高斯协方差函数:这里写图片描述
7,协方差矩阵:这里写图片描述
8,对于训练数据和待预测数据:这里写图片描述
9,通过训练数据预测未知数据的分布:这里写图片描述
10,我们对未知数据最好的估计为其均值:这里写图片描述

举例

1,已知数据与未知数据分布图:这里写图片描述
2,计算已知数据的K矩阵:这里写图片描述
3,计算已知数据与位置数据的相关矩阵:这里写图片描述
4,计算未知数据的估计均值和方差:这里写图片描述

实践中的高斯处理回归:

1,选择参数:这里写图片描述大部分回归效果受参数影响较大,实际中建议使用贝叶斯理论通过最大化这里写图片描述进行参数选择,该式可以通过简单的变量优化算法进行优化求解;

更复杂的高斯回归:

1,
2,定义更复杂的协方差函数:这里写图片描述第一项考虑独立变量小的变迁,是一种短期效应;第二项考虑长期的趋势,是一种长期效应,
3,上式与此式不同,上式不包含周期效应,但是下式包含周期效应:这里写图片描述
4,复杂的回归问题中,方差函数的选取尤为重要!就像。。。前述选择模型一样;
5,实际回归问题中,没有哪个回归问题是不需要一些先验的模型假设的;

本文部分算法优化代码:

1,github.com/mebden/GPtutorial
2,www.gaussianprocess.org/gpml

  • 2
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值